本文目录一览

1,脑子笨怎么学好高中理科

凭我的经验(根据高考分数看,物理应该是满了,化学扣了4分),最重要的是要抓住概念,比如物理概念及其限制条件、公式的推导,二级结论要知道,但不必记住,我就是次次现推的,不会错还加强对概念的理解,但是一定要知道,这样好比别人一次跨一步,你一次跨两步甚至三步,简单题一下就看出了,不过再强调一下,二级结论是虚的步子,一定要次次自己导,会越用越熟的,这样做费小题时间但大题有思路、省时间,还不会因背错、跳步扣分关于化学,我觉得高中化学新概念只在有机那,但是有机又很有套路、很规矩,大多数是初中的延伸,无机系统化了、加入了热化学方程式来更好的描述反应时热量的变化、K和平衡也是一个很容易理解的概念。另外,千万不要自卑,一自卑,遇到难题就没信心了,会越做越晕的,高中的知识比得是方法,我们班上很多人海量做题也作出感觉、能得高分,别放弃就行祝你考得好成绩哦!
要灵活理解
有需要记忆的东西,也有需要理解的东西。我建议你把一些基本的概念、原理先牢记,然后把以往考试中的错题找出来分析,到底是识记性东西没记住,还是理解不够透彻。最后还要把握好自己的心态。每一次考试只不过是对自己前段时间的一个检验,不要去和别人比。每个人都有每个人自己的路要走。而高考也不过是人生中的一个小转折。你正确的去面对,尽自己最大的努力就可以了!~~加油!
十分荣幸回答你的问题我觉得每个人的智商都是一样的 瞧 你以前成绩不错吗 说明你的基础是好的我觉得你学习理科的话在课前先预习一下 把该背的概念记记熟 然后挑几道题目做一些 别太多 5到左右吧 上课我相信你是认真听的在强调一下 我们老师说了 现在学习靠小聪明是不行的 都要靠认真 只要你认真了 我相信你的成绩会上升的 慢慢来吧 别急 理科是慢慢积累的
所谓勤能补拙,多做题就好了,见的多了 自然就会了最主要的是要把所有的公式都要背的很熟,看见题才不会茫然……如果还是不行的话 那就背题吧 把题和答案一起背下来 看见类似的就会了 不过这个方法很笨就是了 希望能帮到你 O(∩_∩)O~(完全个人意见 心得而已)
千万要对自己充满信心!1要培养正确的学习方法,你可以借鉴别的好同学。2要多努力,平时就要比别人多用功。3要多找老师,家长交流,看自己问题处在什么地方。4不要期望一下子就好了,学习是一个长期的过程,要耐得住寂寞! 相信你一定会成功!!!

脑子笨怎么学好高中理科

2,应如何学习高中物理

如何学好高中物理: 在高中理科各科目中,物理科是相对较难学习的一科,学过高中物理的大部分同学,特别是物理成绩中差等的同学,总有这样的疑问:“上课听得懂,听得清,就是在课下做题时不会。”这是个普遍的问题,值得物理教师和同学们认真研究。下面就高中物理的学习方法,浅谈一些自己的看法,以便对同学们的学习有所帮助。 首先分析一下上面同学们提出的普遍问题,即为什么上课听得懂,而课下不会作?我作为学理科的教师有这样的切身感觉:比如读某一篇文学作品,文章中对自然景色的描写,对人物心里活动的描写,都写得令人叫绝,而自己也知道是如此,但若让自己提起笔来写,未必或者说就不能写出人家的水平来。听别人说话,看别人文章,听懂看懂绝对没有问题,但要自己写出来变成自己的东西就不那么容易了。又比如小孩会说的东西,要让他写出来,就必须经过反复写的练习才能达到那一步。因而要由听懂变成会作,就要在听懂的基础上,多多练习,方能掌握其中的规律和奥妙,真正变成自己的东西,这也正是学习高中物理应该下功夫的地方。功夫如何下,在学习过程中应该达到哪些具体要求,应该注意哪些问题,下面我们分几个层次来具体分析。 记忆:在高中物理的学习中,应熟记基本概念,规律和一些最基本的结论,即所谓我们常提起的最基础的知识。同学们往往忽视这些基本概念的记忆,认为学习物理不用死记硬背这些文字性的东西,其结果在高三总复习中提问同学物理概念,能准确地说出来的同学很少,即使是补习班的同学也几乎如此。我不敢绝对说物理概念背不完整对你某一次考试或某一阶段的学习造成多大的影响,但可以肯定地说,这对你对物理问题的理解,对你整个物理系统知识的形成都有内在的不良影响,说不准哪一次考试的哪一道题就因为你概念不准而失分。因此,学习语文需要熟记名言警句、学习数学必须记忆基本公式,学习物理也必须熟记基本概念和规律,这是学好物理科的最先要条件,是学好物理的最基本要求,没有这一步,下面的学习无从谈起。 积累:是学习物理过程中记忆后的工作。在记忆的基础上,不断搜集来自课本和参考资料上的许多有关物理知识的相关信息,这些信息有的来自一题,有的来自一道题的一个插图,也可能来自一小段阅读材料等等。在搜集整理过程中,要善于将不同知识点分析归类,在整理过程中,找出相同点,也找出不同点,以便于记忆。积累过程是记忆和遗忘相互斗争的过程,但是要通过反复记忆使知识更全面、更系统,使公式、定理、定律的联系更加紧密,这样才能达到积累的目的,绝不能象狗熊掰棒子式的重复劳动,不加思考地机械记忆,其结果只能使记忆的比遗忘的还多。 综合:物理知识是分章分节的,物理考纲能要求之内容也是一块一块的,它们既相互联系,又相互区别,所以在物理学习过程中要不断进行小综合,等高三年级知识学完后再进行系统大综合。这个过程对同学们能力要求较高,章节内容互相联系,不同章节之间可以互相类比,真正将前后知识融会贯通,连为一体,这样就逐渐从综合中找到知识的联系,同时也找到了学习物理知识的兴趣。 提高:有了前面知识的记忆和积累,再进行认真综合,就能在解题能力上有所提高。所谓提高能力,说白了就是提高解题、分析问题的能力,针对一题目,首先要看是什么问题——力学,热学,电磁学、光学还是原子物理,然后再明确研究对象,结合题目中所给条件,应用相关物理概念,规律,也可用一些物理一级,二级结论,才能顺利求得结果。可以想象,如果物理基本概念不明确,题目中既给的条件或隐含的条件看不出来,或解题既用的公式不对或该用一、二级结论,而用了原始公式,都会使解题的速度和正确性受到影响,考试中得出高分就成了空话。提高首先是解决问题熟练,然后是解法灵活,而后在解题方法上有所创新。这里面包括对同一题的多解,能从多解中选中一种最简单的方法;还包括多题一解,一种方法去顺利解决多个类似的题目。真正做到灵巧运用,信手拈来的程度。 综上所术,学习物理大致有六个层次,即首先听懂,而后记住,练习会用,渐逐熟练,熟能生巧,有所创新%

应如何学习高中物理

3,怎样学好高中物理

学习物理非常注重过程,一个认知、理解、运用的过程。 1.认知:利用身边的事物或现象甚至是老师叙述的一些例子来帮助自己去充分认识它,对它产生兴趣。 2.理解:用理解的方式去记忆公式、定理、试验等等。可以用形象思维等等巧妙的方法去理解和记忆。例如,什么是真空,可以这样去理解:真空就是真的空了,什么都没有了。 3.运用:一类是来应付考试,另一类则是来解释身边得一些物理现象。 所以,在学习时,首先,不要有惧怕的心理,因为你前一段没学好的经历可能会暗示你什么,这可能会导致你恶性循环。努力告诉自己“我能行!!!”其实心理暗示很有用哦!不过,为了给自己增加底气,最好还是做好预习工作,做到心里有数。 其次,上课要紧跟老师的思路,适当地记些笔记,记一些书本上没有明确阐明的甚至是遗漏的以及自己容易出错的知识点。课下抽时间多练一练,别以任何理由来推托,从而放弃了练习的最佳时期,最后只能导致悲剧的发生。 最后一点也是最重要的一点,就是一定要做好及时总结。例如,上次考试的卷子发下来了,虽然认真订正过了,但还要想想为什么会错?正确答案是怎么算出来的?如果下次再考到还会错吗?等等。 我想,通过这些学习方法,一定能学好物理的。
在高中理科各科目中,物理科是相对较难学习的一科,学过高中物理的大部分同学,特别是物理成绩中差等的同学,总有这样的疑问:“上课听得懂,听得清,就是在课下做题时不会。”这是个普遍的问题,值得物理教师和同学们认真研究。下面就高中物理的学习方法,浅谈一些自己的看法,以便对同学们的学习有所帮助。 首先分析一下上面同学们提出的普遍问题,即为什么上课听得懂,而课下不会作?我作为学理科的教师有这样的切身感觉:比如读某一篇文学作品,文章中对自然景色的描写,对人物心里活动的描写,都写得令人叫绝,而自己也知道是如此,但若让自己提起笔来写,未必或者说就不能写出人家的水平来。听别人说话,看别人文章,听懂看懂绝对没有问题,但要自己写出来变成自己的东西就不那么容易了。又比如小孩会说的东西,要让他写出来,就必须经过反复写的练习才能达到那一步。因而要由听懂变成会作,就要在听懂的基础上,多多练习,方能掌握其中的规律和奥妙,真正变成自己的东西,这也正是学习高中物理应该下功夫的地方。功夫如何下,在学习过程中应该达到哪些具体要求,应该注意哪些问题,下面我们分几个层次来具体分析。 记忆:在高中物理的学习中,应熟记基本概念,规律和一些最基本的结论,即所谓我们常提起的最基础的知识。同学们往往忽视这些基本概念的记忆,认为学习物理不用死记硬背这些文字性的东西,其结果在高三总复习中提问同学物理概念,能准确地说出来的同学很少,即使是补习班的同学也几乎如此。我不敢绝对说物理概念背不完整对你某一次考试或某一阶段的学习造成多大的影响,但可以肯定地说,这对你对物理问题的理解,对你整个物理系统知识的形成都有内在的不良影响,说不准哪一次考试的哪一道题就因为你概念不准而失分。因此,学习语文需要熟记名言警句、学习数学必须记忆基本公式,学习物理也必须熟记基本概念和规律,这是学好物理科的最先要条件,是学好物理的最基本要求,没有这一步,下面的学习无从谈起。 积累:是学习物理过程中记忆后的工作。在记忆的基础上,不断搜集来自课本和参考资料上的许多有关物理知识的相关信息,这些信息有的来自一题,有的来自一道题的一个插图,也可能来自一小段阅读材料等等。在搜集整理过程中,要善于将不同知识点分析归类,在整理过程中,找出相同点,也找出不同点,以便于记忆。积累过程是记忆和遗忘相互斗争的过程,但是要通过反复记忆使知识更全面、更系统,使公式、定理、定律的联系更加紧密,这样才能达到积累的目的,绝不能象狗熊掰棒子式的重复劳动,不加思考地机械记忆,其结果只能使记忆的比遗忘的还多。 综合:物理知识是分章分节的,物理考纲能要求之内容也是一块一块的,它们既相互联系,又相互区别,所以在物理学习过程中要不断进行小综合,等高三年级知识学完后再进行系统大综合。这个过程对同学们能力要求较高,章节内容互相联系,不同章节之间可以互相类比,真正将前后知识融会贯通,连为一体,这样就逐渐从综合中找到知识的联系,同时也找到了学习物理知识的兴趣。 提高:有了前面知识的记忆和积累,再进行认真综合,就能在解题能力上有所提高。所谓提高能力,说白了就是提高解题、分析问题的能力,针对一题目,首先要看是什么问题——力学,热学,电磁学、光学还是原子物理,然后再明确研究对象,结合题目中所给条件,应用相关物理概念,规律,也可用一些物理一级,二级结论,才能顺利求得结果。可以想象,如果物理基本概念不明确,题目中既给的条件或隐含的条件看不出来,或解题既用的公式不对或该用一、二级结论,而用了原始公式,都会使解题的速度和正确性受到影响,考试中得出高分就成了空话。提高首先是解决问题熟练,然后是解法灵活,而后在解题方法上有所创新。这里面包括对同一题的多解,能从多解中选中一种最简单的方法;还包括多题一解,一种方法去顺利解决多个类似的题目。真正做到灵巧运用,信手拈来的程度。 综上所术,学习物理大致有六个层次,即首先听懂,而后记住,练习会用,渐逐熟练,熟能生巧,有所创新?
按照公式,一个一个,去推理。

怎样学好高中物理

4,怎么学好高中物理

高中理科各科目中,物理科是相对较难学习的一科,学过高中物理的大部分同学,特别是物理成绩中差等的同学,总有这样的疑问:“上课听得懂,听得清,就是在课下做题时不会。”这是个普遍的问题,值得物理教师和同学们认真研究。下面就高中物理的学习方法,浅谈一些自己的看法,以便对同学们的学习有所帮助。 首先分析一下上面同学们提出的普遍问题,即为什么上课听得懂,而课下不会作?我作为学理科的教师有这样的切身感觉:比如读某一篇文学作品,文章中对自然景色的描写,对人物心里活动的描写,都写得令人叫绝,而自己也知道是如此,但若让自己提起笔来写,未必或者说就不能写出人家的水平来。听别人说话,看别人文章,听懂看懂绝对没有问题,但要自己写出来变成自己的东西就不那么容易了。又比如小孩会说的东西,要让他写出来,就必须经过反复写的练习才能达到那一步。因而要由听懂变成会作,就要在听懂的基础上,多多练习,方能掌握其中的规律和奥妙,真正变成自己的东西,这也正是学习高中物理应该下功夫的地方。功夫如何下,在学习过程中应该达到哪些具体要求,应该注意哪些问题,下面我们分几个层次来具体分析。 记忆:在高中物理的学习中,应熟记基本概念,规律和一些最基本的结论,即所谓我们常提起的最基础的知识。同学们往往忽视这些基本概念的记忆,认为学习物理不用死记硬背这些文字性的东西,其结果在高三总复习中提问同学物理概念,能准确地说出来的同学很少,即使是补习班的同学也几乎如此。我不敢绝对说物理概念背不完整对你某一次考试或某一阶段的学习造成多大的影响,但可以肯定地说,这对你对物理问题的理解,对你整个物理系统知识的形成都有内在的不良影响,说不准哪一次考试的哪一道题就因为你概念不准而失分。因此,学习语文需要熟记名言警句、学习数学必须记忆基本公式,学习物理也必须熟记基本概念和规律,这是学好物理科的最先要条件,是学好物理的最基本要求,没有这一步,下面的学习无从谈起。 积累:是学习物理过程中记忆后的工作。在记忆的基础上,不断搜集来自课本和参考资料上的许多有关物理知识的相关信息,这些信息有的来自一题,有的来自一道题的一个插图,也可能来自一小段阅读材料等等。在搜集整理过程中,要善于将不同知识点分析归类,在整理过程中,找出相同点,也找出不同点,以便于记忆。积累过程是记忆和遗忘相互斗争的过程,但是要通过反复记忆使知识更全面、更系统,使公式、定理、定律的联系更加紧密,这样才能达到积累的目的,绝不能象狗熊掰棒子式的重复劳动,不加思考地机械记忆,其结果只能使记忆的比遗忘的还多。 综合:物理知识是分章分节的,物理考纲能要求之内容也是一块一块的,它们既相互联系,又相互区别,所以在物理学习过程中要不断进行小综合,等高三年级知识学完后再进行系统大综合。这个过程对同学们能力要求较高,章节内容互相联系,不同章节之间可以互相类比,真正将前后知识融会贯通,连为一体,这样就逐渐从综合中找到知识的联系,同时也找到了学习物理知识的兴趣。 提高:有了前面知识的记忆和积累,再进行认真综合,就能在解题能力上有所提高。所谓提高能力,说白了就是提高解题、分析问题的能力,针对一题目,首先要看是什么问题——力学,热学,电磁学、光学还是原子物理,然后再明确研究对象,结合题目中所给条件,应用相关物理概念,规律,也可用一些物理一级,二级结论,才能顺利求得结果。可以想象,如果物理基本概念不明确,题目中既给的条件或隐含的条件看不出来,或解题既用的公式不对或该用一、二级结论,而用了原始公式,都会使解题的速度和正确性受到影响,考试中得出高分就成了空话。提高首先是解决问题熟练,然后是解法灵活,而后在解题方法上有所创新。这里面包括对同一题的多解,能从多解中选中一种最简单的方法;还包括多题一解,一种方法去顺利解决多个类似的题目。真正做到灵巧运用,信手拈来的程度。 综上所术,学习物理大致有六个层次,即首先听懂,而后记住,练习会用,渐逐熟练,熟能生巧,有所创新? 状元谈物理学习 一、物理的学习是模块化的,共分四个模块: 1.对概念的理解,不能单纯地去背诵。面对一个新的物理量,重要的是要了解它在实际解题中作用。 2.概念的应用:理解概念之后,对它的应用就没有什么大的问题了。解题是,要抓住,每道题中的每一句话都是在给你条件,只要将条件与物理量相对应,然后代到相应的公式中,就可以解出答案了。 3.衍生 4.综合:物理的各个章节中,除了光学相对独立之外,其它都是联系很紧密的,必须注意将他们之间前呼后应起来。 二、如何做习题: 做习题特别是理科习题时,必须把握量与质的关系。主要抓做题的质量。“我”在高中期间从未买过习题,主要是做完书上以及老师给出的题后,总结出每道题的解题思路。解题的过程分为: 1. 分析物理进程:把过程抽象为物理量 2. 利用数学将题解出来 三、学习习惯: 1)上课应该认真听讲,至于学习方法,应该是让学习方法适应自己,而不是让自己去适应别人用起来好的方法。 2)做题的时候要多思考,多提问题。“我”做题的速度一向很慢的,但是每次做完题后,都看看是怎样得出的,看看对以后有什么可借鉴的,达到举一反三的效果,而不是做完后就置之脑后。这样,“我”考试的时候就快了,不象别人,到了考试的时候又去忙着推导。 3)要即错即问,多与老师、同学讨论问题,不要害羞。 4)复习要一遍一遍地反复复习。 5)对于参考书,成绩不是太好的同学,买的时候要找那些有解析、总结归纳比较好的书,而非是那种单纯给出答案的书。

5,高中物理学家总结

答案1、胡克:英国物理学家;发现了胡克定律(F弹=kx) 2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S正比于t2 并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。 3、牛顿:英国物理学家; 动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。 4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。 5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。 6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。 7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。 8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。 9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。 10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e 。 11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。 12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。 13、安培:法国科学家;提出了著名的分子电流假说。 14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。 15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。 16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。 17、楞次:德国科学家;概括试验结果,发表了确定感应电流方向的楞次定律。 18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理论。 19、赫兹:德国科学家;在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。 20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说。发明了摆钟。 21、托马斯·杨:英国物理学家;首先巧妙而简单的解决了相干光源问题,成功地观察到光的干涉现象。(双孔或双缝干涉) 22、伦琴:德国物理学家;继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线—伦琴射线。 23、普朗克:德国物理学家;提出量子概念—电磁辐射(含光辐射)的能量是不连续的,E与频率υ成正比。其在热力学方面也有巨大贡献。 24、爱因斯坦:德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。提出了“质能方程”。 25、德布罗意:法国物理学家;提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应。 26、卢瑟福:英国物理学家;通过α粒子的散射现象,提出原子的核式结构;首先实现了人工核反应,发现了质子。 27、玻尔:丹麦物理学家;把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论。 28、查德威克:英国物理学家;从原子核的人工转变实验研究中,发现了中子。 29、威尔逊:英国物理学家;发明了威尔逊云室以观察α、β、γ射线的径迹。 30、贝克勒尔:法国物理学家;首次发现了铀的天然放射现象,开始认识原子核结构是复杂的。 31、玛丽·居里夫妇:法国(波兰)物理学家,是原子物理的先驱者,“镭”的发现者。 32、约里奥·居里夫妇:法国物理学家;老居里夫妇的女儿女婿;首先发现了用人工核转变的方法获得放射性同位素。
1、胡克:英国物理学家;发现了胡克定律(f弹=kx) 2、伽利略:意大利的著名物理学家;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。 3、牛顿:英国物理学家; 动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。 4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。 5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。 7、焦耳:英国物理学家;测定了热功当量j=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。 9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。 10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e 。 11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。 12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。 13、安培:法国科学家;提出了著名的分子电流假说。 14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。 16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。 18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理论。 20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说。发明了摆钟。 21、托马斯·杨:英国物理学家;首先巧妙而简单的解决了相干光源问题,成功地观察到光的干涉现象。(双孔或双缝干涉) 23、普朗克:德国物理学家;提出量子概念—电磁辐射(含光辐射)的能量是不连续的,e与频率υ成正比。其在热力学方面也有巨大贡献。 24、爱因斯坦:他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。提出了“质能方程”。

6,高中物理知识点总结

 一、运动的描述   1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢S比t ,a用Δv与t 比。   2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等a T平方。   3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。   二、力   1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。   2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑; 洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。   3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹 ,平行四边形定法;合力大小随q变 ,只在最大最小间,多力合力合另边。   多力问题状态揭,正交分解来解决,三角函数能化解。   4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。   三、牛顿运动定律   1.F等ma,牛顿二定律,产生加速度,原因就是力。   合力与a同方向,速度变量定a向,a变小则u可大 ,只要a与u同向。   2.N、T等力是视重,mg乘积是实重; 超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零   四、曲线运动、万有引力   1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。   2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。   3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。   五、机械能与能量   1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。   2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。   3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。   六、电场 〖选修3--1〗   1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。   2.电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。   电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。   场能性质是电势,场线方向电势降。 场力做功是qU ,动能定理不能忘。   4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。   七、恒定电流〖选修3-1〗   1.电荷定向移动时,电流等于q比 t。自由电荷是内因,两端电压是条件。   正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。   2.电阻定律三因素,温度不变才得出,控制变量来论述,r l比s 等电阻。   电流做功U I t , 电热I平方R t 。电功率,W比t,电压乘电流也是。   3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。   4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。   路端电压内压降,和就等电动势,除于总阻电流是。   八、磁场〖选修3-1〗   1.磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定则定方向。   2.F比I l是场强,φ等B S 磁通量,磁通密度φ比S,磁场强度之名异。   3.BIL安培力,相互垂直要注意。   4.洛仑兹力安培力,力往左甩别忘记。   九、电磁感应〖选修3-2〗   1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。   感应电动势大小,磁通变化率知晓。   2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。   3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i 向。   十、交流电〖选修3-2〗   1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。   中性面计时是正弦,平行面计时是余弦。   2.NBSω是最大值,有效值用热量来计算。   3.变压器供交流用,恒定电流不能用。   理想变压器,初级U I值,次级U I值,相等是原理。   电压之比值,正比匝数比;电流之比值,反比匝数比。   运用变压比,若求某匝数,化为匝伏比,方便地算出。   远距输电用,升压降流送,否则耗损大,用户后降压。  十一、气态方程〖选修3-3〗   研究气体定质量,确定状态找参量。绝对温度用大T,体积就是容积量。   压强分析封闭物,牛顿定律帮你忙。状态参量要找准,PV比T是恒量。   十二、热力学定律   1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。   正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。   2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。   十三、机械振动〖选修3--4〗   1.简谐振动要牢记,O为起点算位移,回复力的方向指,始终向平衡位置,   大小正比于位移,平衡位置u大极。   2.O点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4A路,单摆周期l比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。   到质心摆长行,单摆具有等时性。   3.振动图像描方向,从底往顶是向上,从顶往底是下向;振动图像描位移,顶点底点大位移,正负符号方向指。   十四、机械波〖选修3--4〗   1.左行左坡上,右行右坡上。峰点谷点无方向。   2.顺着传播方向吧,从谷往峰想上爬,脚底总得往下蹬,上下振动迁不动。   3.不同时刻的图像,Δt四分一或三, 质点动向疑惑散,S等v t派用场。   十五、光学〖选修3-4〗   1.自行发光是光源,同种均匀直线传。若是遇见障碍物,传播路径要改变。   反射折射两定律,折射定律是重点。光介质有折射率,(它的)定义是正弦比值,还可运用速度比,波长比值也使然。   2.全反射,要牢记,入射光线在光密。入射角大于临界角,折射光线无处觅。   十六、物理光学   1.光是一种电磁波,能产生干涉和衍射。衍射有单缝和小孔,干涉有双缝和薄膜。单缝衍射中间宽,干涉(条纹)间距差不多。小孔衍射明暗环,薄膜干涉用处多。它可用来测工件,还可制成增透膜。泊松亮斑是衍射,干涉公式要把握。〖选修3-4〗   2.光照金属能生电,入射光线有极限。光电子动能大和小,与光子频率有关联。光电子数目多和少,与光线强弱紧相连。光电效应瞬间能发生,极限频率取决逸出功。〖选修3-5〗、   十七、动量 〖选修3--5〗   1.确定状态找动量,分析过程找冲量,同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明。   2.确定状态找动量,分析过程找冲量,外力冲量若为零,初态末态动量同。  

7,高中物理用打点计时器测速度的实验结论怎么写通用的

计算匀变速运动中某点瞬时速度;由匀变速运动物体在某段位移的平均速度等于物体在该段位移中点时刻的瞬时速度;即V(n)=〔s(n)+s(n+1)〕/2ts(n)指第N-1个计时点到第N个计时点的位移,s(n+1)指第N个计时点到第N+1个计时点的位移?〔s(n)+s(n+1)〕指第N-1个计时点到第N+1个计时点的位移.(即把要求的点包括在了他们中间即N处),t指发生两个相邻计数点(N-1到N,N到N+1)之间的时间间隔.2T就是时间间隔总和计算匀变速运动的加速度:(1)、理想纸带的加速度计算:由于理想纸带描述的相邻两个计数点间的距离之差完全相等,即有:S2-S1=S3-S2=…=S(n)-S(n-1)=△S=aT*T;故其加速度a=△S/(T*T) (2)、实际的实验纸带加速度计算:由于实验过程中存在一定的误差,导致各相邻两个计数点间的距离之差不完全相等,为减小计算加速度时产生的偶然误差,采用隔位分析法计算,可以减小运算量,方法是,用S1,S2,S3.表示相邻计数点的距离,两计数点间的时间间隔为T。根据=aT*T有S4-S1=(S4-S3)+(S3-S2)+(S2-S1)=3a1T*T同理S5-S2=S6-S3=3a2T*T求出a1=(S4-S1)/3T*Ta2=(S5-S2)/3T*Ta3=(S6-S3)/3T*T再求平均值计算加速度:a=(a1+a2+a3)/3计时器,是利用特定的原理来测量时间的装置。计时器可以用来帮你解决这些问题。操作界面简便易用,提供了基本的计时控制功能,包括:开始计时、停止计时、继续计时、操作界面简便易用复零、调整计时。电磁打点计时器是一种使用交流电源的计时仪器,其工作电压是4-6V,电源的频率是50Hz,它每隔0.02s打一次点。工作原理:当给电磁打点计时器的线圈通电后,线圈产生磁场,线圈中的振片被磁化,振片在永久磁铁磁场的作用下向上或向下运动,由于交流电的方向每个周期要变化两次,因此振片被磁化后的磁极要发生变化,永久磁铁对它的作用力的方向也要发生变化,当振片受向下的力时打点一次,当振片受向上的力时不打点,所以在交流电的一个周期内打点一次,即每两个点间的时间间隔等于交流电的周期。
计算匀变速运动中某点瞬时速度;由匀变速运动物体在某段位移的平均速度等于物体在该段位移中点时刻的瞬时速度;即V(n)=〔s(n)+s(n+1)〕/2ts(n)指第N-1个计时点到第N个计时点的位移,s(n+1)指第N个计时点到第N+1个计时点的位移?〔s(n)+s(n+1)〕指第N-1个计时点到第N+1个计时点的位移.(即把要求的点包括在了他们中间即N处),t指发生两个相邻计数点(N-1到N,N到N+1)之间的时间间隔.2T就是时间间隔总和计算匀变速运动的加速度:(1)、理想纸带的加速度计算:由于理想纸带描述的相邻两个计数点间的距离之差完全相等,即有:S2-S1=S3-S2=…=S(n)-S(n-1)=△S=aT*T;故其加速度a=△S/(T*T) (2)、实际的实验纸带加速度计算:由于实验过程中存在一定的误差,导致各相邻两个计数点间的距离之差不完全相等,为减小计算加速度时产生的偶然误差,采用隔位分析法计算,可以减小运算量,方法是,用S1,S2,S3.表示相邻计数点的距离,两计数点间的时间间隔为T。根据=aT*T有S4-S1=(S4-S3)+(S3-S2)+(S2-S1)=3a1T*T同理S5-S2=S6-S3=3a2T*T求出a1=(S4-S1)/3T*Ta2=(S5-S2)/3T*Ta3=(S6-S3)/3T*T再求平均值计算加速度:a=(a1+a2+a3)/3计时器,是利用特定的原理来测量时间的装置。计时器可以用来帮你解决这些问题。操作界面简便易用,提供了基本的计时控制功能,包括:开始计时、停止计时、继续计时、操作界面简便易用复零、调整计时。电磁打点计时器是一种使用交流电源的计时仪器,其工作电压是4-6V,电源的频率是50Hz,它每隔0.02s打一次点。工作原理:当给电磁打点计时器的线圈通电后,线圈产生磁场,线圈中的振片被磁化,振片在永久磁铁磁场的作用下向上或向下运动,由于交流电的方向每个周期要变化两次,因此振片被磁化后的磁极要发生变化,永久磁铁对它的作用力的方向也要发生变化,当振片受向下的力时打点一次,当振片受向上的力时不打点,所以在交流电的一个周期内打点一次,即每两个点间的时间间隔等于交流电的周期。
1、打点计时器的原理构造(如图) 实验原理:(1)电磁打点计时器:它是利用电磁感应原理打点计时的一种仪器,当通过4—6V低压交流电时,在线圈和永久磁铁的作用下,振片便上下振动起来,位于振片一端的振针就跟着上下振动而打点,这时,如果纸带运动 ,振针就在纸带上打出一系列点,当交流电源频率为50Hz时,它每隔0.02s打一点,即打出的纸带上每相邻两点间的时间间隔为0.02s。 (2)电火花计时器:它是利用火花放电在纸带上打出小孔而显示点迹的计时仪器。当接通220V交流电源,按下脉冲输出开关时,计时器发出的脉冲电流经接正极的放电针、墨粉纸盘到接负极的纸盘轴,产生火花放电,于是在运动纸带上就打出一系列点迹。当电源频率为50Hz时,它也是每隔0.02s打一次点,即打出的纸带上每相邻两点间的时间间隔也是0.02s。 电火花计时器工作时,纸带运动时受到的阻力小,比电磁打点计时器实验误差小。 打在纸带上的点,记录了纸带运动的时间,如果把纸带跟物体连在一起,纸带上的点就相应地表示出运动物体在不同时刻的位置。 2、带分析物体的运动情况并能计算平均速度。 (1)在纸带上相邻两点间的时间间隔均为0.02s(电源频率为50Hz),所以点迹密集的地方表示纸带运动的速度很小。 (2)根据v=△x/△t,求出在任意两点间的平均速度,这里△x可以用直尺测量出两点间的距离,△t为两点间的时间间隔数与0.02s的乘积。这里必须明确所求的是哪两点之间的平均速度。 3、粗略计算瞬时速度。 某点E的瞬时速度可以粗略地由包含E点在内的两点间的平均速度来表示。如图1.4-1, vE≈vDG,或vE=vDF。 说明:在粗略计算E点的瞬时速度时,可利用公式v=△x/△t来求解,但须注意的是,如果取离E点越接近的两点来求平均速度,这个平均速度越接近E点的瞬时速度,但是距离太小会使测量误差增大,应该根据实际情况选取这两个点。 4、v-t图象与其画法 为了更直观地反映物体的运动情况,我们可以用v-t图象来表示速度随时间的变化规律。 以速度v为纵轴,时间t为横轴建立直角坐标系,根据计算出的不同时刻对应的瞬时速度值,在坐标系中描点,最后用平滑曲线把这些点连接起来就得到了一条能够描述速度v与时间t关系的图象。 5、实验器材 电磁打点计时器(或电火花计时器)及纸带、刻度尺、电源、导线等。 6、注意事项 (1)电源电压要符合要求,电磁打点计时器应使用10V以下的交流电源;电火花计时器要使用220V交流电源。 (2)实验前要检查打点的稳定性和清晰程度,必要时要进行调节或更换器材。 (3)使用打点计时器应先接通电源,待打点计时器稳定后再用手拉纸带。 (4)手拉纸带时,速度应快一些,以防点迹太密集。
结论是针对目的的。这个实验目的是测速度,结论当然要写测出的速度是多少?准不准确等等。
实验报告 一、原理 电磁打点计时器是一种使用交流电源的计时仪器,其工作电压是4~6v,电源的频率是50hz,它每隔0.02s打一次点。 电火花计时器是利用火花放电在纸带上打出小孔而显示出点迹的计时仪器,使用220v交流电压,当频率为50hz时,它每隔0.02s打一次点,电火花计时器工作时,指导运动所受到的阻力比较小,它比电磁打点计时器实验误差小。 如果运动物体带动的纸带通过打点计时器,在纸带上打下的点就记录了物体运动的时间,纸带上的点也相应的表示出了运动物体在不同时刻的位置。研究纸带上的各点间的间隔,就可分析物体的运动状况。 二、实验过程 1.把长木板平放在实验桌上,并使滑轮伸出桌面 2.把打点计时器固定在木板没有滑轮的一侧,并联好电路 3.把一条细绳栓在小车上,细绳跨过定滑轮,下边吊着合适的钩码。 4.把穿过打点计时器的纸带固定在小车后面 5.使小车停在靠近打点计时器处,接通电源,放开小车,让小车运动 6.断开电源,取出纸带 7.换上新的纸带,再重做两次 三、实验数据及计算公式 打点计时器测加速度中的公式v=〔s(n) s(n 1)〕/2t s(n)指第n-1个计时点到第n个计时点的位移,s(n 1)指第n个计时点到第n 1个计时点的位移?〔s(n) s(n 1)〕指第n-1个计时点到第n 1个计时点的位移.(即把要求的点包括在了他们中间即n处) t指发生两个相拧计数点(n-1到n,n到n 1)之间的时间间隔.2t就是时间间隔总和 他们求得的就是这段位移的平均速度,即可以近似看做n(要求的点)点的瞬时速度 相邻两个计数点间的距离为s1,s2,s3.......两计数点间的时间间隔为t,根据△s=at*t有 s4-s3=(s4-s3) (s3-s2) (s2-s1)=3at*t 同理s5-s2=s6-s3=3at*t 求出a1=(s4-s1)/3t*t a2=(s5-s2)/3t*t a3=(s6-s3)/3t*t 再求平均值 四、实验总结 1.打点计时器使用的电源是交流电源,电磁打点计时器电压是4~6v;电火花打点计时器电压是220v。 2.打点计时器在纸带上应打出轻重合适的小圆点,如遇到打出的是小横线,应调整振针距复写纸片的高度,使之大一点。 3.复写纸不要装反,每打完一条纸带,应调整一下复写纸的位置,若还不够清晰,考虑更换复写纸。 4.使用打点计时器,应先接通电源,待打点计时器稳定后再放开纸带。 5.使用电火花计时器时,还应注意把两条白纸带正确穿好,墨粉纸盘夹在两纸带之间;使用打点计时器时,应让纸带通过限位孔,压在复写纸下面。 6.处理纸带数据时,密集点的位移差值测量起来误差大,应舍去;一般以五个点为一个计数点。 7.描点作图时,应把尽量多的点连在一条直线(或曲线)上不能连在线上的点应分居在线的两侧。 8.打点器不能长时间连续工作。

文章TAG:高中  高中物理  物理  二级  高中物理二级结论  
下一篇