本文目录一览

1,一年级数学口诀有哪些

九九乘法口诀
1加1等于2

一年级数学口诀有哪些

2,请问有没有小学一年级的加法与减法口决表发来参考参考好吗 搜

1+1=2 1+2=3 1+3=4 1+4=5 1+5=6 1+6=7 1+7=8 1+8=9 1+9=10 1+9

请问有没有小学一年级的加法与减法口决表发来参考参考好吗  搜

3,小学一年级要不要背加法口诀表

不存在背不背的问题,一年级20以内的加减法是学习数学计算的基础的基础,不管以后学什么,都要用到,为了减少计算错误,一定要熟练,达到脱口而出的地步。能够脱口而出的孩子就不要背了,不熟练的孩子就要背背,然后在运用中慢慢熟练。望采纳
看能力和兴趣吧,如果很喜欢记忆的话就可以背着玩玩,但是想靠背加法口诀做数学题就算了。做多了自然就会了,要一直想着口诀的话,啥时候能“熟能生巧”呢?
只有乘法口诀要背啊。加减慢慢就会了,不要去背啦,多做几题就好了
当然要的,到初中,高中都要用到的。背了的话,算的速度也就快了
不要,三年级要背,不过基础要打好,提前背吧,

小学一年级要不要背加法口诀表

4,大神们谁知道一年级学的那个加减法口诀表横着看和竖着看的规律是什

一年级学的是十以内的加减法,加减法表横着看和竖着看规律如下:1、十以内加减法表横着看,每一行的结果都是一个数,从上到下结果由小变大,变化梯度为1。2、十以内加减法表竖着看,最底层的数最大,最底层的结果比上一层大一,每一层都是这个层数的结果比上一个数大1。结果从上到下,第一列是2.3.4.5.6.7.8.9.10,第二列是3.4.5.6.7.8.9.10。以此类推。3、十以内减法表,竖着看,每一列减数不变,每一列由上到下最终结果数字递增,递增幅度为1。横着看,每一列被减数不变,从左至右最终结果数字依次减小,减小幅度为1。扩展资料:加法表(addition table)是求一位数加法的数表,把任意两个一位数相加的结果列成一张表,称为加法表,可供初学加法的人使用。常用加法表有10以内的加法表和20以内的加法表等。加法是基本的四则运算之一,它是指将两个或者两个以上的数、量合起来,变成一个数、量的计算。表达加法的符号为加号“+”。进行加法时以加号将各项连接起来。参考资料:搜狗百科——数学加法表
横着竖着都相差1

5,怎样快速记住小学一年级的加法口诀表

1、一定要在理解的基础上背,不能硬生生的不理解的背。2、但孩子背的不熟悉的时候,可以用直观操作帮助他们记忆。方法很简单,游戏时学会的.开始就玩些数数的游戏,在游戏中让他明白什么是加什么是减。3、玩找朋友,让他可以轻松找到互为补数的一组组数字,比如1和9,2和8等等。4、最后就是玩买卖东西,找钱,游戏中就教他利用已经熟悉的那一组组朋友来计算,比如8+5,让他把8拆成5+3,因为5需要找到它的朋友5,5+5=10,还剩下个3,10+3=13。同理也可以把5拆成2+3。减法呢,比如11-4,让他把11拆成10+1,10-4=6,还剩下个1,6+1=7。游戏玩多了,算的快了。
记得我们当时学九九乘法表的时候,全班集体背诵1节课多点的时间,然后老师挨个检查,不过的第二天再检查,这是数学最基础的东西,个人认为还是要先理解再硬背。
1、一定要在理解的基础上背,不能硬生生的不理解的背。2、但孩子背的不熟悉的时候,可以用直观操作帮助他们记忆。方法很简单,游戏时学会的.开始就玩些数数的游戏,在游戏中让他明白什么是加什么是减。3、玩找朋友,让他可以轻松找到互为补数的一组组数字,比如1和9,2和8等等。4、最后就是玩买卖东西,找钱,游戏中就教他利用已经熟悉的那一组组朋友来计算,比如8+5,让他把8拆成5+3,因为5需要找到它的朋友5,5+5=10,还剩下个3,10+3=13。同理也可以把5拆成2+3。减法呢,比如11-4,让他把11拆成10+1,10-4=6,还剩下个1,6+1=7。游戏玩多了,算的快了。

6,20以内进位加减法和退位加减法的口诀急求

20以内不进位加减法 1、11-20的数可以和孩子玩猜数游戏。用3种方式描述数:1)个位是2,十位是1 。 2)1个十,5个一。 3)比11大,比13小。用这些方式描述数,让孩子猜,或者反过来孩子描述大人猜,直到熟练。 2、用计数器拨数。家长说数,孩子拨数。边拨边说数的组成。如12是由1个十和2个一组成的。 3、熟练背诵20以内的进位加减法口诀 20以内进位加法口诀 九二11 八三11 七四11 六五11 九三12 八四12 七五12 两个六12 九四13 八五13 七六13 九五14 八六14 两个七14 九六15 八七15 九七16 两个八16 九八17 两个九18 (不用九九18,而用两个九18,同乘法口诀统一起来) 注: 1、前面两个汉字是加数,后面阿拉伯数字表示和,这样可以分清哪是加数,哪是和; 2、加法口诀是大数在前小数在后〈如九三12〉乘法口诀是小数在前大数在后〈如三九二十七〉; 3、口算达到熟练的程度,不要让孩子数指头,或者固定一个加数往上数数,这样孩子习惯了很不好改。10以内的加法口诀和20以内的进位加法口诀就是背诵,背诵,背诵。熟能生巧再配合一些规律的讲解,这样孩子的计算能力才能提高。 4、背诵时间可以随机,不一定非要拿出大块时间来背,每天接送孩子上学放学的时间,路上就可以背。 5、每天一定要坚持出口算练习,一天30道题。 20以内退位减法 20以内退位减法与20以内进位加法相反,就是把20以内退位减法转化为10以内加法。口诀是:“减九加一,减八加二,减七加三,减六加四,减五加五。”如何用口诀,以“减九加一”为例,“减九加一”是指一个数减去9,将这个数的个位加上1所得的结果就是它们的差。 例如:17-9=( )就拿17的个位7加上1结果是8,即17-9=8,13-9=( )就拿13的个位3加上1结果是4,即13-9=4 “减八加二,减七加三,减六加四,减五加五”与“减九加一”的方法一样。

7,一到六年级数学所有公式人教版快

小学数学基础知识整理一、小学数学基础知识整理(一到六年级) 小学一年级 九九乘法口诀表。学会基础加减乘。 小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。 小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。 小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。 小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。 小学六年级 比例百分比概率,圆扇圆柱及圆锥。 二、必背定义、定理公式 三角形的面积=底×高÷2。 公式 S= a×h÷2 正方形的面积=边长×边长 公式 S= a×a 长方形的面积=长×宽 公式 S= a×b 平行四边形的面积=底×高 公式 S= a×h 梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长×宽×高 公式:V=abh 长方体(或正方体)的体积=底面积×高 公式:V=abh 正方体的体积=棱长×棱长×棱长 公式:V=aaa 圆的周长=直径×π 公式:L=πd=2πr 圆的面积=半径×半径×π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。三、读懂理解会应用以下定义定理性质公式 (一)、算术方面 1、加法交换律:两数相加交换加数的位置,和不变。 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8、什么叫方程式?答:含有未知数的等式叫方程式。 9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。 10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。 11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15、分数除以整数(0除外),等于分数乘以这个整数的倒数。 16、真分数:分子比分母小的分数叫做真分数。 17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18、带分数:把假分数写成整数和真分数的形式,叫做带分数。 19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20、一个数除以分数,等于这个数乘以分数的倒数。 21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。(二)、数量关系计算公式方面 1、单价×数量=总价 2、单产量×数量=总产量 3、速度×时间=路程 4、工效×时间=工作总量 5、加数+加数=和 一个加数=和+另一个加数 被减数-减数=差 减数=被减数-差 被减数=减数+差 因数×因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商×除数 有余数的除法: 被除数=商×除数+余数 一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6) 6、 1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 1吨=1000千克 1千克= 1000克= 1公斤= 1市斤 1公顷=10000平方米。 1亩=666.666平方米。 1升=1立方分米=1000毫升 1毫升=1立方厘米 7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。 8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18 9、比例的基本性质:在比例里,两外项之积等于两内项之积。 10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18 11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y 12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y 百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。 13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。 把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。 把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 15、要学会把小数化成分数和把分数化成小数的化发。16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。) 17、互质数: 公约数只有1的两个数,叫做互质数。 18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。 19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数) 20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数) 21、最简分数:分子、分母是互质数的分数,叫做最简分数。 分数计算到最后,得数必须化成最简分数。 个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。 22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。 23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。 24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。 28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应) 29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。 30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。 31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414 32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。 如3. 141592654 33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654…… 34、什么叫代数? 代数就是用字母代替数。 35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c(三)、一般运算规则 1 每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数 2 1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 速度×时间=路程路程÷速度=时间 路程÷时间=速度 4 单价×数量=总价总价÷单价=数量 总价÷数量=单价 5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 加数+加数=和和-一个加数=另一个加数 7 被减数-减数=差被减数-差=减数 差+减数=被减数 8 因数×因数=积积÷一个因数=另一个因数 9 被除数÷除数=商被除数÷商=除数 商×除数=被除数 四、小学数学图形计算公式 1 正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底三角形底=面积 ×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 周长=直径×∏=2×∏×半径 C=∏d=2∏r 面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 侧面积=底面周长×高表面积=侧面积+底面积×2 体积=底面积×高体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3
每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 加数+加数=和 和-一个加数=另一个加数 被减数-减数=差 被减数-差=减数 差+减数=被减数 因数×因数=积 积÷一个因数=另一个因数 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 正方形 c周长 s面积 a边长 周长=边长×4 c=4a 面积=边长×边长 s=a×a 正方体 v体积 a棱长 表面积=棱长×棱长×6 s表=a×a×6 体积=棱长×棱长×棱长 v=a×a×a 3?? 长方形 c周长??s面积 a边长 周长=(长+宽)×2 c=2(a+b) 面积=长×宽 s=ab 4 长方体 v体积 s面积??a长??b 宽 h高 (1)表面积(长×宽+长×高+宽×高)×2 s=2(ab+ah+bh) (2)体积=长×宽×高 v=abh 5?? 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 平行四边形 s面积 a底 h高 面积=底×高 s=ah 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8?? 圆形 s面积 c周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏?半径 c=∏d=2∏r (2)面积=半径×半径×∏ 9?? 圆柱体 v体积??h高?? s;底面积?? r底面半径 c底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 圆锥体 v体积 h高 s;底面积 r底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数62616964757a686964616fe58685e5aeb931333264643234 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题 非封闭线路上的植树问题主要可分为以下三种情形 ⑴如果在非封闭线路的两端都要植树,那么 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%)
1到6年级数学公式1 .每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2. 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3. 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4. 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5. 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 加数+加数=和 和-一个加数=另一个加数 7 被减数-减数=差 被减数-差=减数 差+减数=被减数 8 因数×因数=积 积÷一个因数=另一个因数 9 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 1. 正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2. 正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3. 长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 .长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 .三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6. 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7. 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9. 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10. 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 和差问题的公式; 总数÷总份数=平均数 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题 :1. 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 :(盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 :相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 :追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 :顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 :溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题:利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%)
qwertyuioop

文章TAG:一年级加减法口诀表一年  一年级  年级  
下一篇