初中教案模板范文数学全等三角形,初一数学全等三角形教教吧
来源:整理 编辑:挖葱教案 2025-07-22 04:30:19
1,初一数学全等三角形教教吧
因为如图所以角A=30 角D=30 所以角DNC=60 所以角ENA=60 所以角PNA=60 所以角NPA=90 所以AB与ED垂直
2,人教初二数学全等三角形
证明:∵AE和CF是△ABC的高
∴∠AFC=∠BFC=90°
∠BAE+∠ABE=∠ABE+∠FCB=90°
∴∠BAE=∠FCB
∵AF=CF
∴△AFG全等于△CFB
∴AG=CB

3,初二数学全等三角形说案怎么写
1、,∠AEB直角。AM∥BN,∠MAB ∠NBA=180度。∠MAB.∠NBA的平分线交于点E, 所以,∠EAB ∠EBA=90度。所以∠AEB=90. 2、DE=CE(证明如第3题证明) 3、AD BC的值不变,等于AB。 延长AE交BN于点F,,∠EAB=∠DAE=∠BFE,三角形ABF为等边三角形。所以AB=BF.又∠AEB=90. 所以AE=EF.,,∠AED=∠FEC.所以三角形DAE全等于三角形CEF。所以AD=CF.DE=CE(第2题的证明在这) 所以AD BC=CF BC=BF=AB.
4,三角形全等的判定教案
一、学习目标1.掌握三角形全等的判定方法“边角边”公理,能初步应用“边角边”公理判定两个三角形全等;认识两边和其中一边的对角对应相等的两个三角形不一定全等.2.经历探索三角形全等的条件的过程,体验通过实践、归纳获得数学结论的过程.3.会运用“边角边”公理证明两个三角形全等,掌握综合法证明的格式.4.通过探究三角形全等条件的活动,培养大胆猜想的良好思维品质以及发现问题的能力.二、指导自学问题:1 .什么样的两个三角形叫做全等三角形?回答:能够完全重合的两个三角形叫做全等三角形.2 .如果△ABC与△ABC满足三条边对应相等,三个角对应相等,那么△ABC与△ABC全等吗?为什么?回答:△ABC与△ABC全等.因为能够完全重合的两个三角形全等.3.如果△ABC与△A′B′C′满足上述六个条件中的一部分,△ABC与△A′B′C′全等吗?回答:△ABC与△A′B′C′满足上述六个条件中的一个或两个,△ABC与△A′B′C′不一定全等. △ABC与△A′B′C′满足三边对应相等,△ABC与△A′B′C′一定全等.3.如果△ABC与△A′B′C′满足上述六个条件中的一部分,△ABC与△A′B′C′全等吗?回答:△ABC与△A′B′C′满足上述六个条件中的一个或两个,△ABC与△A′B′C′不一定全等. △ABC与△A′B′C′满足三边对应相等,△ABC与△A′B′C′一定全等.4.△ABC与△A′B′C′满足上述六个条件中的三个还有几种情形? 回答:除“三条边对应相等”外,还有五种情形:(2)两边及其夹角对应相等;(3)两边及其中一边的对角对应相等;(4)两角及其夹边对应相等;(5)两角及其中一角的对边对应相等;(6)三个角对应相等.(一)探究条件,获得结论探究5:满足两边及其夹角对应相等的△ABC与△A′B′C′全等吗?(1)先任意画出一个△ABC,再画一个△A′B′C′,使AB=A′B′,∠A=∠A′,AC=A′C′.(2)把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?画法:1.画∠DA′E=∠A;2.在射线A′D、A′E上分别截取A′B′=AB,A′C′=AC;3.连接线段B′C′.△A′B′C′为所求的三角形. (2)把画好的△ABC剪下,放到△ABC上,它们全等.三、教师讲解(一)探究条件,获的结论探究5的结果反映了什么规律?得到判定两个三角形全等的一个方法:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).符号表述:在△ABC与△ABC中,∴ △ABC≌△ABC(SAS).例2 如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出的DE长就是A、B的距离.为什么?证明:在△ABO和△DEO中,∴ △ABO≌△DEO(SAS).∴ AB=DE(全等三角形对应边相等).即量出的DE长就是A、B的距离. 探究6:我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定△ABC与△A′B′C′全等吗?为什么?我们可以通过画图回答:(1)先任意画出一个△ABC,再画一个△A′B′C′,使AB=A′B′,∠B=∠B′,AC=A′C′,其中AB>AC.(2)把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?我们可以通过画图回答:(1)先任意画出一个△ABC,再画一个△A′B′C′,使AB=A′B′,∠B=∠B′,AC=A′C′,其中AB>AC.(2)把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?画法:1.画∠DB′E=∠B;2.在射线B′D上截取A′B′=AB.3.由于线段A′C′不在射线B′E上,且A′C′=AC,所以,射线B′E上可能有两个C′点,均使A′C′=AC.因此,满足条件的△A′B′C′可能不唯一.(2)把画好的△A′B′C′剪下,放到△ABC上,它们也不一定全等.我们还可以通过实验回答:把一长一短两根细木棍的一端A用螺钉铰合在一起,使长木棍的另一端与射线BC的端点B重合.适当调整好长木棍与射线BE所成的角后,固定住长木棍,把短木棍摆起来,使短木棍的另一端分别落在射线BE的两个不同位置C、D处.如图,△ABC与△ABD满足两边及其中一边的对角对应相等的条件,但△ABC与△ABD不全等.思考:探究6的结果反映了什么规律?回答:有两边及其中一边的对角对应相等的两个三角形不一定全等.1.如图,两车从南北方向的路段AB的一端A出发,分别向东,向西行进相同的距离,到达C,D两地.此时C,D到B的距离相等吗?为什么?解:此时C,D到B的距离相等.∵ BA⊥DC∴ ∠DAB=∠CAB=90°在△DAB和△CAB中,∴ △DAB≌△CAB (SAS)∴ DB=CB(全等三角形的对应边相等).即此时C,D到B的距离相等.
5,初中数学三角函数公式有哪些
三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。三角函数的公式有半角公式sin(A/2)=±√((1-cosA)/2)、倍角公式Sin2A=2SinA*CosA、两角和与差公式Sin2A=2SinA*CosA、平方关系公式sin2α+cos2α=1、倒数关系公式tanα·cotα=1等等。三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。初中数学三角函数公式如下:三角函数半角公式sin(A/2)=±√((1-cosA)/2)cos(A/2)=±√((1+cosA)/2)tan(A/2)=±√((1-cosA)/((1+cosA))三角函数倍角公式Sin2A=2SinA*CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)三角函数两角和与差公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cossinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)平方关系公式sin2α+cos2α=1cos2a=(1+cos2a)/2tan2α+1=sec2αsin2a=(1-cos2a)/2cot2α+1=csc2α倒数关系公式tanα·cotα=1sinα·cscα=1cosα·secα=1商数关系公式tana=sina/cosacota=cosa/sinatan(A-B)=(tanA-tanB)/(1+tanAtanB)三角函数积化和差sinAsinB=-[cos(A+B)-cos(A-B)]/2cosAcosB=[cos(A+B)+cos(A-B)]/2sinAcosB=[sin(A+B)+sin(A-B)]/2cosAsinB=[sin(A+B)-sin(A-B)]/2三角函数和差化积sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)三角函数诱导公式:诱导公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)诱导公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα诱导公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα诱导公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα
文章TAG:
初中 教案 模板 范文 初中教案模板范文数学全等三角形