本文目录一览

1,数学论文范文初中 500

数学论文 www.wsdxs.cn/html/shuxue
你想写关于那个方面的论文啊

{0}

2,初中数学论文

最佳答案《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

{1}

3,初二勾股定理600字数学小论文

最近我们学习了“勾股定理”。它是初等几何中的一个基本定理,是指“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理虽然只有简单的一句话,但它却有着十分悠久的历史,尤其是它那“形数结合”、“形数统一”的思想方法,启迪和促进了我国乃至世界的数学发展。 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代人民对这一数学定理的发现和应用,远比毕达哥拉斯要早得多。在我国最早的数学著作《周髀算经》的开头,有一段周公与商高的“数学对话”: 周公问:“听说您对数学非常精通,我想请教一下:我们一没有登天的云梯,二没有丈量整个地球的尺子,那么我们怎样才能得到关于天地之间的数据呢?” 商高回答说:“我们已经在实践中总结出了一些了解天地的好方法。如当直角三角形(矩)的一条直角边(勾)等于3,另一条直角边(股)等于4的时候,那么它的斜边(弦)就必定是5。这就叫做勾股弦定理,是在大禹治水的时候就总结出来的一个定理。” 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,这就比毕达哥拉斯要早五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。 我国古代数学家们不仅很早就发现并应用了勾股定理,而且很早就尝试对勾股定理作出理论性的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。他创制了一幅“勾股圆方图”,用形数结合的方法,对勾股定理进行了详细的证明。在“勾股圆方图”中,以弦为边长得到正方形abde,它是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间那个小正方形的边长为b-a,则面积为(b-a)2。于是便有了如下的式子:a2+b2=c2。《九章算术》中的《勾股章》,对勾股定理的表述是:“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:弦=(勾2+股2)(1/2) 我国古代数学家对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数结合”、“形数统一”的思想方法,更具有科学创新的重大意义。正如我国当代数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。” 我们今天学习勾股定理,不但要学会利用它进行计算、证明和作图,更要学习和了解它的历史,了解其中体现出来的“形数结合”、“形数统一”的思想方法,这对我们今后的数学发展和科学创新都将具有十分重大的意义。

{2}

4,求初二的数学论文一篇

小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
初中数学小论文 今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!! 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!

5,初中数学论文急需跪求好心人来啊

一 代数知识是在算术知识的基础上发展起来的,其特点是用字母表示数,使数的概念及其运算 法则抽象化和公式化。初中一年级刚接触代数时,学生要经历由算术到代数的过渡,这里的 主要标志是由数过渡到字母表示数,这是在小学的数的概念的基础上更高一个层次上的抽 象。字母是代表数的,但它不代表某个具体的数,这种一般与特殊的关系正是初一学生学习 的困难所在。 为了克服初一新生对这一转化而引发的学习障碍,教学中要特别重视“代数初步知识”这一 章的教学。它是承小学知识之前,启初中知识之后,开宗明义,搞好中小学数学衔接的重要 环节。数学中要把握全章主体内容的深度,从小学学过的用字母表示数的知识入手,尽量用 一些字母表示数的实例,自然而然地引出代数式的概念。再讲述如何列代数式表示常见的数 量关系,以及代数式的一些初步应用知识。要注意始终以小学所接触过的代数知识(小学没 有用“代数”的提法)为基础,对其进行较为系统的归纳与复习,并适当加强提高。使学生 感到升入初一就像在小学升级那样自然,从而减小升学感觉的负效应。 初一代数的第一堂课,一般不讲课本知识,而是对学生初学代数给予一定的描述、指导。目 的是在总体上给学生一个认识,使其粗略了解中学数学的一些情况。如介绍:(1)数学的 特点。(2)初中数学学习的特点。(3)初中数学学习展望。(4)中学数学各环节的学习 方法,包括预习、听讲、复习、作业和考核等。(5)注意观察、记忆、想象、思维等智力 因素与数学学习的关系。(6)动机、意志、性格、兴趣、情感等非智力因素与数学学习的 联系。 二 学生对于数的概念,在小学数学中虽已有过两次扩展,一次是引进数0,一次是引进分数(指 正分数)。但学生对数的概念为什么需要扩展,体会不深。而到了初一要引进的新数——— 负数,与学生日常生活上的联系表面上看不很密切。他们习惯于“升高”、“下降”的这种说 法,而现在要把“下降5米”说成“升高负5米”是很不习惯的,为什么要这样说,一时更 不易理解。所以使学生认识引进负数的必要是初一数学中首先遇到的一个难点。我们在正式 引入负数这一概念前,先把小学数学中的数的知识作一次系统的整理,使学生注意到数的概 念是为解决实际问题的需要而逐渐发展的,也是由原有的数集与解决实际问题的矛盾而引发 新数集的扩展。即自然数集添进数0→扩大自然数集(非负整数集)添进正分数→算术数集 (非负有理数集)添进负整数、负分数→有理数集……。这样就为数系的再一次扩充作好准 备。正式引入负数概念时,可以这样处理,例:在小学对运进60吨与运出40吨,增产3 00千克与减产100千克的意义已很明确了,怎样用一个简单的数把它们的意义全面表示 出来呢?从而激发学生的求知欲。再让学生自己举例说明这种相反意义的量在生活中是经常 地接触到的,而这种量除了要用小学学过的算术数表示外,还要用一个语句来说明它们的相 反的意义。如果取一个量为基准即“0”,并规定其中一种意义的量为“正”的量,与之相 反意义的量就为“负”的量。用“+”表示正,用“-”表示负。这样,逐步引进正、负数 的概念,将会有助于学生体会引进新数的必要性。从而在心理产生认同,进而顺利地把数的 范畴从小学的算术数扩展到初一的有理数,使学生不至产生巨大的跳跃感。 三 初一的四则运算是源于小学数学的非负有理数运算而发展到有理数的运算,不仅要计算绝对 值,还要首先确定运算符号,这一点学生开始很不适应。在负数的“参算”下往往出现计算 上的错误,有理数的混合运算结果的准确率较低,所以,特别需要加强练习。另外,对于运 算结果来说,计算的结果也不再像小学那样唯一了。如|a|,其结果就应分三种情况讨论。 这一变化,对于初一学生来说是比较难接受的,代数式的运算对他们而言是个全新的问题, 要正确解决这一难点,必须非常注重,要使学生在正确理解有理数概念的基础上,掌握有理 数的运算法则。对运算法则理解越深,运算才能掌握得越好。但是,初一学生的数学基础尚 不能透彻理解这些运算法则,所以在处理上要注意设置适当的梯度,逐步加深。有理数的四 则运算最终要归结为非负数的运算,因此“绝对值”概念应该是我们教学中必须抓住的关键 点。而定义绝对值又要用到“互为相反数”的概念,“数轴”又是讲授这两个概念的基础, 一定要注意数形结合,加强直观性,不能急于求成。学生正确掌握、熟练运用绝对值这一概 念,是要有一个过程的。在结合实例利用数轴来说明绝对值概念后,还得在练习中逐步加深 认识、进行巩固。 学生在小学做习题,满足于只是进行计算。而到初一,为了使其能正确理解运算法则,尽量 避免计算中的错误,就不能只是满足于得出一个正确答案,应该要求学生每做一步都要想想 根据什么,要灵活运用所学知识,以求达到良好的教学效果。这样,不但可以培养学生的运 算思维能力,也可使学生逐步养成良好的学习习惯。 四 进入初中的学生年龄大都是11至12岁,这个年龄段学生的思维正由形象思维向抽象思维 过渡。思维的不稳定性以及思维模式的尚未形成,决定了列方程解应用题的学习将是初一学 生面临的一个难度非常大的坎。列方程解应用题的教学往往是费力不小,效果不佳。因为学 生解题时只习惯小学的思维套用公式,属定势思维,不善于分析、转化和作进一步的深入思 考,思路狭窄、呆滞,题目稍有变化就束手无策。初一学生在解应用题时,主要存在三个方 面的困难:(1)抓不住相等关系;(2)找出相等关系后不会列方程;(3)习惯用算术解 法,对用代数方法分析应用题不适应,不知道要抓相等关系。这头一个方面是主要的,解决 了它,另两个方面就都好解决了。所以,小学数学第八册列方程解应用题教学时,一要使学 生掌握算术法和代数法的异同点,并讲清列方程解应用题的思路;二要有针对性地让学生加 强把实际中的数量关系改写成代数式的训练,这样对小学生逆向思维有好处,使较复杂的应 用题化难为易。初一讲授列方程解应用题教学时,要重视知识发生过程。因为数学本身就是 一种思维活动,教学中要使学生尽可能参与进去,从而形成和发展具有思维特点的智力结构。 要让学生始终参加审题、分析题意、列方程、解方程等活动,了解列方程解应用题的实际意 义和解题方法及优越性,这其中审题应是最为关键的一环。要想法弄清题意,找出能够表示 应用题全部含义的一个相等关系。找不出相等关系,方程就列不出来,而找出这样的等量关 系后,将其中涉及的待求的某个数设为未知数,其余的量用已知数或含有已知数与未知数的 代数式表示出来,方程就列出来了。要教会学生通过阅读题目、理解题意、进而找出等量关 系、列出方程解决问题的方法,使之形成“观察———分析———归纳”的良好习惯,这对 于整个数学的学习都是至关重要的。另外,在教学中还要告诉学生,有些问题用算术法解决 是不方便的,只有用代数解法。对于某些典型题目在帮助学生用代数方法解出后,同时与算 术解法作比较,使学生有个更清晰的认识,从而逐渐摒弃用算术解法做应用题的思维习惯。 总之,学生在小学数学中接触的都是较为直观、简单的基础知识,而升入初一后,要学的知 识在抽象性、严密性上都有一个飞跃,作为初一数学教师,认真分析研究有关问题,对搞好 中小学数学课堂教学的衔接和提高教学质量有很大的现实意义

6,求写篇初中数学学生论文急急急

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 初中数学小论文 今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
培养学生思维的灵活性是数学教学工作者的一个重要教学环节,它主要表现在使学生能根据事物的变化,运用已有的经验灵活地进行思维,及时地改变原定的方案,不局限于过时或不妥的假设之中,因为客观世界时时处处在发展变化,所以它要求学生用变化、发展的眼光去认识、解决问题,“因地制宜”“量体裁衣”的思维灵活性的表现。 数学教学中,“一题多解”是训练,是培养学生思维灵活的一种良好手段,通过“一题多解”的训练能沟通知识之间的内在联系,提高学生应用所学的基础知识与基本技能解决实际问题的能力,逐步学会举一反三的本领,在教材安排的例题中,有相当类的题目存在一题多解的情况。例初中数学教材第三册《线段中垂线性质》一节中有一例。 在△ABC中,∠ACB=90°,CD⊥AB,D为垂足, AE是CF的中垂线交BC于E,求证:∠1=∠2 分析: 方法(1):因为∠1与∠CFA互余, 所以要证∠1=∠2,关键证:∠CFA=∠ACF 要证AC=AF,即有中垂线性质可得。 方法(2):利用全等△进行证明,过点F作FM⊥CB于M,证△CDF≌△CMF,即可。 方法(3):利用中介量,连结EF可得EC=EF=>∠2=∠3 =>∠1=∠2 利用△ACE≌△AFE=>EF⊥AB=>CD//EF=>∠1=∠3 方法(4):利用外角的性质, ∠AFC=∠2+∠B ∠3=∠B 利用条件即可得. ∠ACF=∠1+∠4 ∠AFC=∠ACF 通过这一例题的教学,不仅能使学生掌握新知识,还能起到复习巩固旧知识的作用,使学生对证明角相等的方法有了更进一步的明确, 同时能活跃课堂气氛,使学生对数学学习产生浓厚的兴趣,也培养了学生的一种钻研精神,使学生在思考问题上具有灵活性、多变性,避免了学生在几何证明中钻死胡同的现象,所以教师在教学过程中,要重视一题多解的教学,特别在备课中要根据教学内容、学生情况适当地进行教材处理和钻研,要对知识进行横向和纵向联系,这堂课才能做到丰富多彩,同时教师在课堂上也要有应变能力,认真听取学生的一些方法,不能局限于自己的思想法,在本人的一次例题教学中,碰到一件令我吸取教训的事,在一节几何课上,我出了这样一题: “已知AB//CE,求证∠ABC+∠BCD+∠CDE=360°”。 我在教学准备过程中,我想好了两种方法: 第一种是过点C作AB(CD)的平行线, 第二种是连结BD。 这两种方法比较常见也比较方便,但在这例题教学中,学生并没有按照我的思路上考虑,有一学生举手发言说:在AB上任取一点连结G连结GC,当时我马上指出他的思路不对,之后,我就介绍了上述两种方法,但下课后,学生递上了一份答案:“他原来画的辅助线未动,还在DE上任取一点H连结CH,又作CF//BA,这样很快得出∠1=∠2,∠3=∠4,不难推知△GBC与△HDC之内角总和为360°,到此只须再做两次等量代换此题便得证,所以教师在教学过程中,不能局限于自己的思路,也不能怕学生问题回答错了而影响自己的教学安排,多听听学生的回答,可能在教学中会起到意想不到的作用,同时能提高学生的学习积极性,使其思维变得宽广、深刻、灵活。 “一题多解”是加深和巩固所学知识的有效途径和方法,充分运用学过的知识,从不同的角度思考问题,采用多种方法解决问题,这有利于学生加深理解各部分知识间的纵、横方向的内在联系,掌握各部分知识之间的相互转化,所以教师在 参考资料:从百度里查的

7,初中的数学论文 2000字以上

开放型习题是相对有明确条件和明确结论的封闭式习题而言的,是指题目的条件不完备或结论不确定的习题。 练习是数学教学重要的组成部分,恰到好处的习题,不仅能巩固知识,形成技能,而且能启发思维,培养能力。在教学过程中,除注意增加变式题、综合题外,适当设计一些开放型习题,可以培养学生思维的深刻性 和灵活性,克服学生思维的呆板性。 一、运用不定型开放题,培养学生思维的深刻性 不定型开放题,所给条件包含着答案不唯一的因素,在解题的过程中,必须利用已有的知识,结合有关条件,从不同的角度对问题作全面分析,正确判断,得出结论,从而培养学生思维的深刻性。 如:学习“真分数和假分数”时,在学生已基本掌握了真假分数的意义后,问学生:b/a是真分数,还是假分数?因a、b都不是确定的数,所以无法确定b/a是真分数还是假分数。在学生经过紧张的思考和激烈的争论后得出这样的结论:当b<a时,b/a为真分数;当b≥a时, b/a是假分数。这时教师进一步问:a、b可以是任意数吗? 这样不仅使学生对真假分数的意义有了更深刻的理解,而且使学生的逻辑思维能力得到了提高。 又如,学习分数时,学生对“分率”和“用分数表示的具体数量”往往混淆不清,以致解题时在该知识点上出现错误,教师虽反复指出它们的区别,却难以收到理想的效果。在学习分数应用题后,让学生做这样一道习题:“有两根同样长的绳子,第一根截去9/10,第二根截去9/10米,哪一根绳子剩下的部分长?”此题出示后,有的学生说:“一样长。”有的学生说:“不一定。”我让学生讨论哪种说法对,为什么?学生纷纷发表意见,经过讨论,统一认识:“因为两根绳子的长度没有确定,第一根截去的长度就无法确定,所以哪一根绳子剩下的部分长也就无法确定,必须知道绳子原来的长度,才能确定哪根绳子剩下的部分长。”这时再让学生讨论:两根绳子剩下部分的长度有几种情况?经过充分的讨论,最后得出如下结论:①当绳子的长度是1米时,第一根的9/10等于9/10米,所以两根绳子剩下的部分一样长;②当绳子的长度大于1米时,第一根绳子的 9/10大于9/10米,所以第二根绳子剩下的长;③当绳子的长度小于1米时,第一根绳子的9/10小于9/10 米 ,由于绳子的长度小于9/10米时,就无法从第二根绳子上截去9/10米,所以当绳子的长度小于1米而大于9/ 10米时,第一根绳子剩下的部分长。 这样的练习,加深了学生对“分率”和“用分数表示的具体数量”的区别的认识,巩固了分数应用题的解题方法,培养了学生思维的深刻性,提高了全面分析、解决问题的能力。 二、运用多向型开放题,培养学生思维的广阔性 多向型开放题,对同一个问题可以有多种思考方向,使学生产生纵横联想,启发学生一题多解、一题多变、一题多思,训练学生的发散思维,培养学生思维的广阔性和灵活性。 如:甲乙两队合修一条长1500米的公路,20天完成,完工时甲队比乙队多修100米,乙队每天修35米,甲队每天修多少米? 这道题从不同的角度思考,得出了不同的解法: 1、先求出乙队20天修的,根据全长和乙队20 天修的可以求出甲队20天修的,然后求甲队每天修的。 算式是(1500-35×20)÷20 2、先求出乙队20天修的,根据乙队20天修的和甲队比乙队多修100米可以求出甲队20天修的,然后求甲队 每天修的。 算式是:(35×20+100)÷20 3、可以先求出两队平均每天共修多少米, 再求甲队每天修多少米。 算式是:1500÷20-35 4、可以先求出甲队每天比乙队多修多少米, 再求甲队每天修多少米。 算式是:100÷20+35 5、假设乙队和甲队修的同样多,那么两队20天共修(1500+100)米,然后求两队每天修的,再求甲队每 天修的。 算式是:(1500+100)÷20÷2 6、假设乙队和甲队修的同样多,那么两队20天共修(1500+100)米,然后求甲队20天修的,再求甲队每 天修的。 算式是:(1500+100)÷2÷20 7、假设乙队和甲队修的同样多,那么两队20天共修(1500+100)米,也就是甲队(20×2)天修的,由此 可以求出甲队每天修的。 算式是:(1500+100)÷(20×2) 然后引导学生比较哪种方法最简便,哪种思路最简捷。 这类题,可以给学生最大的思维空间,使学生从不同的角度分析问题,探究数量间的相互关系,并能从不 同的解法中找出最简捷的方法,提高学生初步的逻辑思维能力,从而培养学生思维的广阔性和灵活性。 三、运用多余型开放题,培养学生思维品质的批判性 多余型开放题,将题目中的有用条件和无用条件混在一起,产生干扰因素,这就需要在解题时,认真分析 条件与问题的关系,充分利用有用条件,舍弃无用条件,学会排除干扰因素,提高学生的鉴别能力,从而培养 学生思维的批判性。 如:一根绳子长25米,第一次用去8米,第二次用去12米, 这根绳子比原来短了多少米? 由于受封闭式解题习惯的影响,学生往往会产生一种凡是题中出现的条件都要用上的思维定势,不对题目 进行认真分析,错误地列式为:25-8-12或25-(8+12)。 做题时引导学生画图分析,使学生明白:要求这根绳子比原来短了多少米,实际上就是求两次一共用去多 少米,这里25米是与解决问题无关的条件,正确的列式是:8+12。 通过引导分析这类题,可以防止学生滥用题中的条件,有利于培养学生思维的批判性,提高学生明辨是非 、去伪存真的鉴别能力。 四、运用隐藏型开放题,培养学生思维的缜密性 隐藏型开放题,是解题所需的某些条件隐藏在题目的背后,如不注意容易遗漏。在解题时既要考虑问题及 明确的条件,又要考虑与问题有关的隐藏着的条件。这样有利于培养学生认真细致的审题习惯和思维的缜密性 。 如:做一个长8分米、宽5分米的面袋,至少需要白布多少平方米? 解答此题时,学生往往忽视了面袋有“两层”这个隐藏的条件,错误地列式为:8×5,正确列式应为:8× 5×2。 解此类题时要引导学生认真分析题意,找出题中的隐藏条件,使学生养成认真审题的良好习惯,培养学生 思维的缜密性。 五、运用缺少型开放题,培养学生思维的灵活性 缺少型开放题,按常规解法所给条件似乎不足,但如果换个角度去思考,便可得到解决。 如:在一个面积为12平方厘米的正方形内剪一个最大的圆,所剪圆的面积是多少平方厘米? 按常规的思考方法:要求圆的面积,需先求出圆的半径,根据题意,圆的半径就是正方形边长的一半,但 根据题中所给条件,用小学的数学知识无法求出。换个角度来考虑:可以设所剪圆的半径为r, 那么正方形的 边长为2r, 正方形的面积为(2r)[2]=4r[2]=12,r[2]=3,所以圆的面积是3.14×3=9.42(平方厘米)。 还可以这样想:把原正方形平均分成4个小正方形, 每个小正方形的边长就是所剪圆的半径,设圆的半径 为r, 那么每个小正方形的面积为r[2],原正方形的面积为4r[2],r[2]=12÷4,所剪圆的面积是3.14×(12 ÷4)=9.42(平方厘米)。 通过此类题的练习,有利于培养学生思维的灵活性,提高灵活解题的能力。 解答开放型习题,由于没有现成的解题模式,解题时往往需要从多个不同角度进行思考和深索,且有些问 题的答案是不确定的,因而能激发学生丰富的想象力和强烈的好奇心,提高学生的学习兴趣,调动学生主动参 与的积极性。
随机事件出现的可能性的量度。概率论最基本的概念之一。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。 在一个特定的随机试验中,称每一可能出现的结果为一个基本事件,全体基本事件的集合称为基本空间。随机事件(简称事件)是由某些基本事件组成的,例如,在连续掷两次骰子的随机试验中,用z,y分别表示第一次和第二次出现的点数,z和y可以取值1、2、3、4、5、6,每一点(z,y)表示一个基本事件,因而基本空间包含36个元素。“点数之和为2”是一事件,它是由一个基本事件(1,1)组成,可用集合{(1,1)}表示“点数之和为4”也是一事件,它由(1,3),(2,2),(3,1)3个基本事件组成,可用集合{(1,3),(3,1),(2,2)}表示。如果把“点数之和为1”也看成事件,则它是一个不包含任何基本事件的事件,称为不可能事件。在试验中此事件不可能发生。如果把“点数之和小于40”看成一事件,它包含所有基本事件 ,在试验中此事件一定发生,所以称为必然事件。若a是一事件,则“事件a不发生”也是一个事件,称为事件a的对立事件。实际生活中需要对各种各样的事件及其相互关系、基本空间中元素所组成的各种子集及其相互关系等进行研究。 古典概率 古典概率讨论的对象局限于随机试验所有可能结果为有限个等可能的情形,即基本空间由有限个元素或基本事件组成,其个数记为n,每个基本事件发生的可能性是相同的。若事件a包含m个基本事件,则定义事件a发生的概率为p(a)=m/n,也就是事件a发生的概率等于事件a所包含的基本事件个数除以基本空间的基本事件的总个数,这是p.-s.拉普拉斯的古典概率定义,或称之为概率的古典定义。历史上古典概率是由研究诸如掷骰子一类赌博游戏中的问题引起的。计算古典概率,可以用穷举法列出所有基本事件,再数清一个事件所含的基本事件个数相除,即借助组合计算可以简化计算过程。 几何概率 若随机试验中的基本事件有无穷多个,且每个基本事件发生是等可能的,这时就不能使用古典概率,于是产生了几何概率。几何概率的基本思想是把事件与几何区域对应,利用几何区域的度量来计算事件发生的概率,布丰投针问题是应用几何概率的一个典型例子。 概率的频率定义 随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。r.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。a.h.柯尔莫哥洛夫于1933年给出了概率的公理化定义。

文章TAG:数学  论文  论文范文  范文  数学论文范文参考初中  500  
下一篇