本文目录一览

1,二年级上数学重点内容

第一单元:长度单位第二单元:100以内的加法和减法(二)第三单元:角的初步认识第四单元:表内乘法(一)第五单元:观察物体(一)第六单元:表内乘法(二)第七单元:认识时间第八单元:数学广角第九单元:总复习回答完毕,这是2016年审版的最新版本.

二年级上数学重点内容

2,数与代数知识点

这个是概念http://wenku.baidu.com/view/57970720192e45361066f5b7.html这个是知识点梳理http://wenku.baidu.com/view/02604049e45c3b3567ec8b16.html?from=related&hasrec=1希望对你有帮助

数与代数知识点

3,小学数学数与代数里重要的基础知识有哪些

填空1、一个数,它的亿位上是9,百万位上是7,十万位上和千位上都是5,其余各位都是0,这个数写作(),读作(),改写成以万作单位的数(),省略万后面的尾数是()万。
40×60×120=288000三个数积最大,即每个数最大。120的约数从大到小为120 60 40 30 24……取前3个自然数

小学数学数与代数里重要的基础知识有哪些

4,小学二年级上册数学有哪些知识点

摘要:1.加数+加数=和  因数×因数=积 和—加数=加数  积÷因数=因数   1.加数+加数=和  因数×因数=积  和—加数=加数  积÷因数=因数  被减数—减数=差  被除数÷除数=商  被减数—差=减数  被除数÷商=除数  减数+差=被减数  除数×商=被除数  2.除数>余数  除数×商+余数=被除数  除数×商=被除数-余数  3.从一点引出两条射线所组成的图形叫作角。  角有一个顶点,两条直边。  一把三角尺有三个角,其中一个是直角。  4.正方体和长方体的特征  共同点:正方体和长方体都有6个面,12条棱和8个顶点。  不同点:(面)正方体的6个面都是正方形。  长方体有6个面都是长方形,也可能相对的两个面是正方形。  正方体的12条棱都相等。  长方体的12条棱不都相等,长方体的12条棱可以分成3组,每组4条棱长度相等,也可以分成2组,一组4条棱长度相等,另一组8条棱长度相等。  关系:正方体是特殊的长方体。  5.至少用8个小正方体才可以拼成一个大正方体。  6.正方形和长方形的特征  共同点:正方形和长方形都有4条边,4个直角,对边相等。  不同点:(边)正方形的4条边相等,也可以说邻边相等。  长方形的对边相等。  关系:正方形是特殊的长方形。  7.至少用4个小正方形才可以拼成一个大正方形。  8.一个平方数的4倍还是一个平方数。  从1开始的连续的奇数的和是一个平方数。  9.一个因数乘几,另一个因数除以几,积不变。  10.任何数与10相乘,只要在这个数的末尾添1个0。  11.任何数与0相乘,积都得0。  0除以任何数不等于0的数,商都是0,所以0不能作除数。
1主要是00以内的加减法 乘法口诀的应用 一步间谍反应用题还有一些认识图形 数学广角之类

5,数与代数知识整理

数与代数知识点 与数有关的公式:1、被除数÷除数=商 2、乘数×乘数=积 3、被减数-减数=差 4、加数+加数=和 知识点一:整数 1、整数的范围 整数包括自然数和负整数,或者说整数由正整数、零、负整数组成。 (1)自然数 自然数的意义:我们在数物体的时候,用来表示物体的个数0,1,2,3,4,5,…..叫做自然数。自然数的个数是无限的,没有最大的自然数。 “0”的含义:“0”表示一个物体也没有,在计数中起占位作用,表示该数位上没有计数单位。“0”还可以表示起点、分界点等。“0”是最小的自然数。 (2)正数 正数的定义 以前学过的8、16、200……..这样的数叫做正数。 正数的写法和读法 正数前面也可以加“+”号,例如:+8读作:正八。“+”号一般可以省略不写。 (3)负数 负数的定义 像-1、-5、-132……这样的数叫做负数。“一”叫负号。 负数的写法和读法 负数前面加“一”号,例如:-15读作:负十五。数字越大的负数反而越小。 “0”既不是正数,也不是负数。 (4)整数与自然数的联系及区别 自然数全是整数,整数不全是自然数,还包括负整数。 知识点二:百分数 1、百分数的意义 (1)分母是100的分数叫做百分数。 (2)表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率。 百分数应用题知识点归纳: 1、 求常见的百分率 如:达标率、及格率、成活率、发芽率、出勤率等 。 求百分率就是求一个数是另一个数的百分之几 2、 求一个数比另一个数多(或少)百分之几 实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。 求甲比乙多百分之几 (甲-乙)÷乙 求乙比甲少百分之几 (甲-乙)÷甲 3、 求一个数的百分之几是多少 一个数(单位“1”) ×百分率 4、 已知一个数的百分之几是多少,求这个数 部分量÷百分率=一个数(单位“1”) 5、 折扣 几折就是十分之几也就是百分之几十。 6、 利率 存入银行的钱叫做本金。 取款时银行多支付的钱叫做利息。 利息与本金的比值叫做利率。 利息=本金×利率×时间 百分数通常不写成分数形式,而采用符号“%”来表示,叫做百分号。 知识点二 :小数 1、小数的意义 把整数“1”平均分成10份,100份,1000份……这样的1份或几份是十分之几,百分之几,千分之几…….可以用小数来表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……. 2、小数大小的比较 比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就在;十分位上的数也相同的,百分位上的数大的那个数就大…… 3、数的改写与求近似数 数的改写与省略这个数某一位后面的尾数写成近似数的方法 为了读写方便,常把较大的数简写成用“万”或“亿”作单位的数。如:2365500=236.55万(改写用“万”作单位的数)。有时还可以根据需要,省略这个数某一的尾数,写成近似数。如:2365500≈237万(省略万位后面的尾数),有时还要求保留一位小数的近似数。如:7.62983≈7.6(保留一位小数)。 取近似数时,常用“四舍五入法”或“进一法”、“去尾法”把一个数某一位后面的尾数省略。 知识点三 :分数 1、分数的意义 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。 2、分数单位 把单位“1”平均分成若干份,表示其中一份的分数,叫做分数单位。 3、分数的分类 (1)真分数 分子比分母小的分数叫做真分数。 (2)假分数 分子比分母大或者与分母相等的分数叫做假分数。 4、分数的基本性质 分数的分子一分母同时乘或除以一个相同的数(0除外),分数的大小不变,这叫做分数的基本性质。 5、分数与除法的关系 (1)分数的分子相当于除法的被除数,分数的分母相当于除法的除数,分数线相当于除法的除号。(2)在除法中,除数不能为0,在分数中分母也不能为0,除数、分母为0没有意义。 6、约分 把一个分数化成同它相等,且分子、分母都比较小的分数的过程,叫做约分。 7、最简分数 分子、分母是互质数的分数叫做最简分数。 8、通分 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 9、分数大小的比较 分母相同的两个分数,分子大的分数比较大;分子相同的两个分数,分母小的分数比较大。 10、分数化小数 根据分数与除法的关系,把分数转化为除法算式,然后计算,就可以得到小数。 11、小数化为分数 原来有几位小数,就在1的的后面写上几个0。 12、分数的基本性质与小数基本性质的关系 分数的基本性质与小数的基本性质是一致的。小数的末尾添上“0” 或者去掉“0”,就相当于把相应的分数的分子、分母同时扩大(或缩小)到原来的10倍(或 )、100倍(或 )、1000倍(或 )……

6,小学 数与代数的知识点 要做手抄报

知识点一:整数 1、整数的范围 整数包括自然数和负整数,或者说整数由正整数、零、负整数组成。 (1)自然数 自然数的意义:我们在数物体的时候,用来表示物体的个数0,1,2,3,4,5,…..叫做自然数。自然数的个数是无限的,没有最大的自然数。 自然数的基本单位:任何非“0”的自然数都是若干个“1”组成,所以“1”是自然数的基本单位。1也是最小的一位数。 “0”的含义:“0”表示一个物体也没有,在计数中起占位作用,表示该数位上没有计数单位。“0”还可以表示起点、分界点等。“0”是最小的自然数。 自然数的两种意义:如果一个自然数用来表示物体的个数就叫基数;如果一个自然数用来表示物体排列的次序就叫序数。 (2)正数 正数的定义 以前学过的8、16、200……..这样的数叫做正数。 正数的写法和读法 正数前面也可以加“+”号,例如:+8读作:正八。“+”号一般可以省略不写。 (2)负数 负数的定义 像-1、-5、-132……这样的数叫做负数。“一”叫负号。 负数的写法和读法 负数前面加“一”号,例如:-15读作:负十五。数字越大的负数反而越小。 “0”既不是正数,也不是负数。 (4)整数与自然数的联系及区别 自然数全是整数,整数不全是自然数,还包括负整数。 2、整数的读法和写法 数的分级 按照我国的计数习惯,整数从个位起,每四个数位是一级。个位、十位、百位、千位是个级,表示多少个一;万位、十万位、百万位、千万位是万级,表示多少个万位;亿位、十亿位、百亿位、千亿位是亿级,表示多少个亿。 计数单位 整数、小数都是按照十进制写出的数,其中一(个)、十、百…….是整数的计数单位。计数单位是按一定顺序排列的。 数位 各个计数单位所占的位置叫数位。如9357中的“5”在右起第二位,即“5”所在的数位是十位。 位数 指一个数是由几个数字组成,是含有数位个数,如1234占有四个数位,就是四位数。 十进制计数法 十进制是指满十进一,十个一进为十,十个十进位百,十个百进为千……每相邻两个计数单位间的进率都是“十”,这样的计数法叫做十进制计数法。 (2)整数的读法和写法 整数的读法 读整数时,从高位到低位,一级一级地读,读亿级、万级时,按照个级的读法去读,只要在后面加上“亿”字、“万”字就可以了,每一级末尾的“0”都不读出来,其他数位有一个“0”或连续几个“0”都只读一个零。 整数的写法 写整数时,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。 3、整数大小的比较 比较两个整数的大小,整数数位多的数比较大;整数数位相同的,要从高位依次看相同数位上的数字,相同数位上数字大的数比较大。 知识点二 小数 1、小数的意义 把整数“1”平均分成10份,100份,1000份……这样的1份或几份是十分之几,百分之几,千分之几…….可以用小数来表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……. 1、小数的读法和写法 小数部分的最高计数单位“十分之一”和整数部分的最低计数单位“一”之间的进率也是十。 (2)小数的读法和写法 读小数时,整数部分按整数的读法读,整数部分是0的读作“零”,小数点读作“点”,小数部分可以顺次读出每个数位上的数字。 写小数时,整数部分按整数的写法写,整数部分是零的要写“0”,小数点点在个位的右下角,然后依次写出小数部分每个数位上的数字。 3、小数大小的比较 比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就在;十分位上的数也相同的,百分位上的数大的那个数就大…… 4、数的改写与求近似数 (1)数的改写与省略这个数某一位后面的尾数写成近似数的方法 为了读写方便,常把较大的数简写成用“万”或“亿”作单位的数。如:2365500=236.55万(改写用“万”作单位的数)。有时还可以根据需要,省略这个数某一的尾数,写成近似数。如:2365500≈237万(省略万位后面的尾数),有时还要求保留一位小数的近似数。如:7.62983≈7.6(保留一位小数)。 取近似数时,常用“四舍五入法”或“进一法”、“去尾法”把一个数某一位后面的尾数省略。 (2) 较大数的“改写”与“求近似数”的异同 相同点 都是改变原数的计数单位。根据要求用“亿”或“万”作单位。 不同点 “改写”只改变数的单位,不改变数的大小,用“=”表示。“求近似数”是用四舍五入法或“进一法”、“去尾法”,既改变了数的单位,又改变数的大小,用“≈”表示。 5、小数的分类与性质 (1)小数的分类 按小数的整数部分是否为0,小数分为纯小数和带小数。 纯小数 整数部分是0的小数叫做纯小数。 带小数 整数部不是0的小数叫做带小数。(纯小数都小于1,带小数都大于或等于1。) 按小数部分的倍数是否有限,小数可以分为有限小数和无限小数。 有限小数 小数部分的位数有限的小数,叫做有限小数。 无限小数 小数部分的位数无限的小数,叫做无限小数。 无限小数又可以分为无限不循环小数和无限循环小数两类。 循环小数 一个无限小数,从小数部分的某一位起,一个数定或几个数字依次不断地重复出现,这样的小数叫做无限循环小数。 循环节 一个循环小数的小数部分依次不断地重复出现的数字,叫做这个循环小数的循环节。 循环小数的简便写法 写循环小数时,为了简便,一般只写出它的第一个循环节,并在循环节的首位和末尾数字上各点一个小圆点。 (2)小数的性质 小数的末尾添上“0”或者去掉“0”,小数的大小不变,(注意:是在“小数的末尾”而不是“小数点的后面”。) (3)小数点位置的移动引起小数的大小变化 小数点向右移动一位、二位、三位、…….小数就扩大到原来的10倍、100倍、1000倍……小数点向左移动一位、两位、三位……小数就缩小到原来的 、 、 …… (4)常见的质量单位、人民币单位、时间单位及各单位间的坦率 (5)平年、闰年的判断方法 公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。 知识点三 分数 1、分数的意义 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。 2、分数单位 把单位“1”平均分成若干份,表示其中一份的分数,叫做分数单位。 3、分数的分类 (1)真分数 分子比分母小的分数叫做真分数。 (2)假分数 分子比分母大或者与分母相等的分数叫做假分数。 4、分数的基本性质 分数的分子一分母同时乘或除以一个相同的数(0除外),分数的大小不变,这叫做分数的基本性质。 5、分数与除法的关系 (1)分数的分子相当于除法的被除数,分数的分母相当于除法的除数,分数线相当于除法的除号。(2)在除法中,除数不能为0,在分数中分母也不能为0,除数、分母为0没有意义。 6、约分 把一个分数化成同它相等,且分子、分母都比较小的分数的过程,叫做约分。 7、最简分数 分子、分母是互质数的分数叫做最简分数。 8、通分 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 9、分数大小的比较 分母相同的两个分数,分子大的分数比较大;分子相同的两个分数,分母小的分数比较大。 10、分数化小数 根据分数与除法的关系,把分数转化为除法算式,然后计算,就可以得到小数。 分数化小数有两种情况:一般是分子除以分母能除尽,得到有限小数,如 =0.4;一种是分子除以分母除不尽,得到无限小数,如 =0.142857…… 11、小数化为分数 原来有几位小数,就在1的的后面写上几个0 母,把原来的小数点去掉作分子,化成分数后,能约分的要约分。 12、分数的基本性质与小数基本性质的关系 分数的基本性质与小数的基本性质是一致的。小数的末尾添上“0” 或者去掉“0”,就相当于把相应的分数的分子、分母同时扩大(或缩小)到原来的10倍(或 )、100倍(或 )、1000倍(或 )……

7,小学数学知识点

1 正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 1 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 加数+加数=和 和-一个加数=另一个加数 7 被减数-减数=差 被减数-差=减数 差+减数=被减数 8 因数×因数=积 积÷一个因数=另一个因数 9 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 1 正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数×因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长) 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2、正方体 (V:体积 a:棱长 ) 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3、长方形( C:周长 S:面积 a:边长 ) 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高) (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5、三角形 (s:面积 a:底 h:高) 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6、平行四边形 (s:面积 a:底 h:高) 面积=底×高 s=ah 7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8、圆形 (S:面积 C:周长 л d=直径 r=半径) (1)周长=直径×л=2×л×半径 C=лd=2лr (2)面积=半径×半径×л 9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积×高÷3 11、总数÷总份数=平均数 12、和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 13、和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 14、差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 15、相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 16、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 17、利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 常用单位换算 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 1世纪=100年 1年=12月 大月(31天)有:1 8 月 小月(30天)的有:4 9 月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒
在网上查就有的 (一)、数和数的运算(20课时) 这节重点确定在整除的一系列概念和分数、小数的基本性质、四则运算和简便运算上。 1、系统地整理有关数的内容,建立概念体系,加强概念的理解(4课时),包括“数的意义”、“数的读法与写法”、“数的改写”、“数的大小比较”、“数的整除”等知识点。 2、沟通内容间的联系,促进整体感知(2课时),包括“分数、小数的性质”、“整除的概念比较”。 3、全面概念四则运算和计算方法,提高计算水平(6课时),包括“四则运算的意义和法则”、“四则混合运算”。 4、利用运算定律,掌握简便运算,提高计算效率(5课时),包括“运算定律和简便运算”。 5、精心设计练习,提高综合计算能力(3课时)。 (二)、代数的初步知识(10课时) 本节重点内容应放在掌握简易方程及比和比例的辨析。 1、形成系统知识、加强联系(3课时),包括“字母表示数”、“比和比例”、“正、反比例”等知识点。 2、抓解题训练,提高解方程和解比例的能力(4课时),包括“简易方程”、“解比例”。 3、 辨析概念,加深理解(3课时),包括“比和比例”、“正比例和反比例”。 (三)、应用题(30课时) 这节重点应放在应用题的分析和解题技能的发展上,难点内容是分数应用题。 1、简单应用题的分析与整理(3课时)。 2、复合应用题的分析与整理(6课时)。 3、列方程解应用题的分析与整理(5课时)。 4、分数应用题的分析与整理(10课时)。 5、用比例知识解答应用题的分析与整理(3课时)。 6、应用题的综合训练(3课时)。 (四)、量的计量 本节重点放在名数的改写和实际观念上。 1、整理量的计量知识结构(2课时),包括“长度、面积、体积单位”、“重量与时间单位”。 2、巩固计量单位,强化实际观念(4课时),包括“名数的改写”。 3、综合训练与应用(1课时)。 (五)、几何初步知识(12课时) 本节重点放在对特征的辨析和对公式的应用上。 1、强化概念理解和系统化(2课时),包括“平面图形的特征”、“立体图形的特征”。 2、准确把握图形特征,加强对比分析,揭示知识间的联系与区别(4课时),包括“平面图形的周长与面积”、“立体图形的表面积和体积”。 3、加强对公式的应用,提高掌握计算方法(5课时)。能实现周长、面积、体积的正确计算。 4、整体感知、实际应用(1课时)。 (六)、简单的统计(6课时) 本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。 1、求平均数的方法(1课时)。 2、加深统计图表的特点和作用的认识(3课时),包括“统计表”、“统计图”。 3、进一步对图表分析和回答问题(2课时),包括填图和根据图表回答问题。 五、复习中应注意的问题 1、对于小学数学毕业总复习内容、过程和时间的计划安排,在实际教学中要根据实际情况作出调整。 2、要注意小学数学知识与中学知识结构上的衔接,要为中学的学习做些铺垫,适当拓展知识点。 3、要把握考纲要求,根据实际需要对计划的复习内容、过程和时间上做出调整。既要全面学到知识,又要掌握复习知识的深浅程度。

文章TAG:二年  二年级  年级  上册  二年级上册数与代数知识点  
下一篇