本文目录一览

1,寻高中数学教学案例

《数学金榜》 《导与练》 《成才之路》等

寻高中数学教学案例

2,高一数学教案

这是我上传的资源,你可以去这里下载 http://www.math15.com/bbs/thread-7612-1-1.html,很高兴能传播数学,也很高兴能认识你。

高一数学教案

3,求高中数学 直线与平面平行的判定 教案

龙岩教案网 >> 高中教案 >> 数学 >> 新人教A版 >> 必修2 >> 第二章http://www.lyjiaoan.com/gz/List_469.html这里有哦~

求高中数学 直线与平面平行的判定 教案

4,高一数学教案集合

高一数学教案集合知识结构 本小节首先从初中代数与几何涉及的集合实例人手,引出集合与集合的元素,高中数学第三册第二章第一节,高中数学"推理案例赏识"教案,高等数学第十章教案 高一数学教案集合 高一数学教案集合http://ufae81.chinaw3.com/shuxue.html 高一数学教案集合

5,求高中数学教案

人教版高三数学教案选[高中数学教案]教学章节:数学归纳法2教学章节:数学归纳法应用4教学章节:充要条件6教学章节:椭圆的定义11教学章节:椭圆及其标准方程14教学章节:椭圆及其标准方程17教学章节:椭圆的简单几何性质20教学章节:椭圆的几何性质23教学章节:椭圆及其标准方程27教学章节:椭圆及其标准方程30
http://www.zhaojiaoan.com/soft/sort01/sort03/sort0305/index_1.html 无穷等比数列各项的和教学设计 数学归纳法及其应用举例教学设计 合情推理教学设计 简单的三角恒等变换教案 向量的概念教学设计 向量的概念教案 向量的线性运算教学设计 数乘向量教学设计 向量共线的条件与轴上向量坐标运算教学设计 平面向量的基本定理及坐标表示教案 向量数量积的定义及运算率教案 向量数量积的坐标运算和度量公式教案 人教版必修4 平面向量的数量积教案 人教版必修4 平面向量应用举例教案 人教版必修4第二章平面向量小结教案 平面向量基本定理及平面向量的正交分解及坐标表示教学设计 直线和平面平行的判定与性质教案 直线与平面平行的判定教学设计 直线与平面平行的判定教案 直线和平面平行与平面和平面平行教案 平面向量基本定理及坐标表示教学设计 向量的加法教案 向量的加法教学设计 向量的加法运算及其几何意义教案 双曲线的简单几何性质第一课时教案 双曲线的简单几何性质学案 求动圆圆心的轨迹教学设计 用二分法求方程的近似解教案 空间向量的坐标运算教案 函数的解析式教学设计

6,怎么写高中数学教案能不能写一个看看

这是一个教案但是有些图复制不上,你先看一下,如果满意,再我博客留言我传给你!! 教学目标 1、在理解推导过程的基础上,掌握圆的标准方程的形式特点。 2、理解方程中各个字母的含义,应用圆的有关性质,求圆的标准方程。 教学重点和难点 重点:圆的标准方程的理解、应用. 难点:利用圆的基本知识及性质求圆的标准方程. 教学过程设计 (一)导入新课: 前面我们研究了曲线与方程的相关问题,知道要求曲线方程只需找出曲线方程上一个代表点,然后利用题目中的性质列出表达式化简即可。 (二)依标导学: 初中我们学过的圆的定义. “平面内与定点距离等于定长的点的轨迹是圆”. 定点就是圆心,定长就是半径. 根据圆的定义,求圆心是c(a,b),半径是r的圆的方程. 设 M(x,y)是圆上任意一点,圆心坐标为(a,b),半径为r.则│CM│=r, 即 两边平方得 + = 这就是圆心为C(a,b),半径为r的圆的方程,叫做圆的标准方程. 如果圆的圆心在原点.O(0,0).即a=0.b=0.这时圆的方程为 例:(1)求圆心(3,-2),半径为5的圆的方程; a=3,b=-2,r=5 圆的方程为 + =25 (2)求(x+3)2+(y-4)2=5的圆心和半径。 a=-3,b=4,r= 三、异步训练: 求满足下列条件的圆的方程: (1) 圆心C(-2,1),并过点A(2,-2); 分析:由圆的定义知r=|AC|= =5 而a=-2,b=1,所以将相应要素代入标准方程即可。 (2) 圆心C (1,3),并与直线3x-4y-6=0相切; 分析:圆与直线相切,则连结圆心与切点的半径垂直于切线,即求半径转化为求圆心到直线的距离,由点到直线的距离公式可得r= =3 而a=1,b=3,所以将相应要素代入标准方程即可。 (3) 过点A(0,1)和点B(2,1),半径为5。 分析:本题要求C(a,b),A,B均是圆上的点,所以|AC|=r,|BC|=r,利用两点间距离公式列方程即可求出a,b的值。 四、达标测试: 求圆心在坐标原点,且与直线4x+2y-1=0相切的圆的标准方程。 五、课堂小结: 圆的标准方程两要素:圆心、半径 六、课后作业: 课后练习A、3、(3)、(4) 师生共同回答 启发引导学生推导 根据方程形式让学生作答 先分析每一个题型的特征,然后利用圆的性质求出标准方程中所要求的条件代入方程即可。让同学自己组织步骤 (板演) 板书设计: 圆的标准方程 一、 圆的定义: 例1、(1)求圆心(3,-2),半径为5的圆的方程; 二、 求圆的标准方程: (2)求(x+3)2+(y-4)2=5的圆心和半径; 例2、(1)圆心C(-2,1),并过点A(2,-2); (2)圆心C (1,3),并与直线3x-4y-6=0相切; (3)过点A(0,1)和点B(2,1),半径为5

7,人教版高中数学教案

http://www.pep.com.cn/gzsx/jszx/xkbsyjc/jsys/bx1/
1.理解不等式的性质,掌握不等式各个性质的条件和结论之间的逻辑关系,并掌握它们的证明方法以及功能、运用; 2.掌握两个实数比较大小的一般方法; 3.通过不等式性质证明的学习,提高学生逻辑推论的能力; 4.提高本节内容的学习,;培养学生条理思维的习惯和认真严谨的学习态度; 教学建议 1.教材分析 (1)知识结构 本节首先通过数形结合,给出了比较实数大小的方法,在这个基础上,给出了不等式的性质,一共讲了五个定理和三个推论,并给出了严格的证明。 知识结构图 (2)重点、难点分析 在“不等式的性质”一节中,联系了实数和数轴的对应关系、比较实数大小的方法,复习了初中学过的不等式的基本性质。 不等式的性质是穿越本章内容的一条主线,无论是算术平均数与几何平均数的定理的证明及其应用,不等式的证明和解一些简单的不等式,无不以不等式的性质作为基础。 本节的重点是比较两个实数的大小,不等式的五个定理和三个推论;难点是不等式的性质成立的条件及其它的应用。 ①比较实数的大小 教材运用数形结合的观点,从实数与数轴上的点一一对应出发, 与初中学过的知识“在数轴上表示的两个数,右边的数总比左边的数大”利用数轴可以比较数的大小。 指出比较两实数大小的方法是求差比较法: 比较两个实数a与b的大小,归结为判断它们的差a-b的符号,而这又必然归结到实数运算的符号法则. 比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差的符号. ②理清不等式的几个性质的关系 教材中的不等式共5个定理3个推论,是从证明过程安排顺序的.从这几个性质的分类来说,可以分为三类: (Ⅰ)不等式的理论性质: (对称性) (传递性) (Ⅱ)一个不等式的性质: (n∈N,n>1) (n∈N,n>1) (Ⅲ)两个不等式的性质: 2.教法建议 本节课的核心是培养学生的变形技能,训练学生的推理能力.为今后证明不等式、解不等式的学习奠定技能上和理论上的基础. 授课方法可以采取讲授与问答相结合的方式.通过问答形式不断地给学生设置疑问(即:设疑);对教学难点,再由讲授形式解决疑问.(即:解疑).主要思路是:教师设疑→学生讨论→教师启发→解疑. 教学过程可分为:发现定理、定理证明、定理应用,采用由形象思维到抽象思维的过渡,发现定理、证明定理.采用类比联想,变形转化,应用定理或应用定理的证明思路;解决一些较简单的证明题. 第一课时 教学目标 1.掌握实数的运算性质与大小顺序间关系; 2.掌握求差法比较两实数或代数式大小; 3.强调数形结合思想. 教学重点 比较两实数大小 教学难点 理解实数运算的符号法则 教学方法 启发式 教学过程 一、复习回顾 我们知道,实数与数轴上的点是一一对应的,在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大.例如,在右图中,点A表示实数 ,点B表示实数 ,点A在点B右边,那么 . 我们再看右图, 表示 减去 所得的差是一个大于0的数即正数.一般地: 若 ,则 是正数;逆命题也正确. 类似地,若,则 是负数;若 ,则 .它们的逆命题都正确. 这就是说:(打出幻灯片1) 由此可见,要比较两个实数的大小,只要考察它们的差就可以了,这也是我们这节课将要学习的主要内容. 二、讲授新课 1. 比较两实数大小的方法——求差比较法

文章TAG:教案  高中  高中数学  数学  教案高中数学  
下一篇