本文目录一览

1,初中数学教案下载

a href="http://www.3edu.net/" target="_blank">http://www.3edu
火星学习网,你去下载吧

初中数学教案下载

2,八年级数学教学设计

本学期,我从各方面严格要求自己,结合本班学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有计划、有组织、有步骤地开展,圆满地完成了教学任务。 一、认真备课。不但备学生,而且备教材、备教法。根据教学内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都做了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣的教具,课后及时对该课用出总结。 二、增强上课技能,提高数学教学质量。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生学得容易,学得轻松,觉得愉快,注意精神,培养学生多动口动手动脑的能力。 三、认真批改作业,布置作业有针对性,有层次性。对学生的作业批改及时,认真分析并记录学生的作业情况,将他们在作业过程出现的问题做出分类总结,进行透切的讲评,并针对有关情况及时改进教学方法,做到有的放矢。 四、做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,同时加大了对后进生的辅导的力度。对后进生的辅导,并不限于学生知识性的辅导,更重要的是学生思想的辅导,提高后进生的成绩,首先解决他们的心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。 五、积极推进素质教育。为此,我在教学工作中注意了能力的培养,把传授知识、技能和发展智力、能力结合起来,在知识层面上注入了思想情感教育的因素,发挥学生的创新意识和创新能力。让学生的各种素质都得到有较的发展和培养。 一份耕耘,一份收获。良好的成绩将为我今后工作带来更大的动力。不过也应该清醒地认识到工作中存在的不足之处。教学工作苦乐相伴,我将一如既往地勤勉,务实地工作,我将本着“勤学、善思、实干”的准则,一如既往,再接再厉,把工作搞得更好。

八年级数学教学设计

3,免费下载人教版初中数学教案

http://www.zhaojiaoan.com/soft/sort01/sort03/sort0157/down-12261.html 《18.1 勾股定理》教案 -------人教版义务教育课程标准实验教科书《数学》八年级(下) 课题:18.1 勾股定理 教学任务分析 授课时间 授课班级 课型 新授课 教学目标 知识技能 1、了解勾股定理的文化背景。 2、体验勾股定理的探索过程。 3、运用勾股定理进行简单计算。 数学思考 在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。 解决问题 1、通过拼图活动,体验数学思维的严谨性,发展形象思维。 2、在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果。 3、初步渗透运用勾股定理解决直角三角形相关的问题的数学方法。 情感态度 1、通过对勾股定理历史的了解,感受数学文化,激发学习热情。 2、在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。 ......http://www.zhaojiaoan.com/soft/sort01/sort03/sort0157/down-12260.html 三角形全等的条件——两角和一边 课题:13.2§三角形全等的条件——两角和一边 授课时数:一课时 授课班级:八年级 设计内容:三角形全等的条件——两角和一边 1、学情分析:(1)学生的认识基础:学生基本明确了要判断两个三角形全等,至少需要三个要素,并且三个元素有一定的位置关系。(2)学生理解和掌握回感到困难,主要表现在:①想象力差,②用判断方法进行说理或证明思路混乱,不知从何下手,应用能力差。 2、教学目标: 1)知识目标:①使学生能灵活运用“角边角”规律及其角角边规律来判定三角形全等。②使学生会利用“角边角”规律及其角角边规律进行简单的证明。 过程与方法:在探索三角形全等的条件的活动过程中,让学生真正体会到两个三角形全等对应边、角之间的内在联系,形成符号与语言 ......

免费下载人教版初中数学教案

4,求新人教版初中数学教案全套免费下载

http://www.newkc.net/newkc_km.asp?kmID=5 这里面有一部分
http://www.zhaojiaoan.com/soft/sort01/sort03/sort0157/down-12261.html《18.1勾股定理》教案-------人教版义务教育课程标准实验教科书《数学》八年级(下)课题:18.1勾股定理教学任务分析授课时间授课班级课型新授课教学目标知识技能1、了解勾股定理的文化背景。2、体验勾股定理的探索过程。3、运用勾股定理进行简单计算。数学思考在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。解决问题1、通过拼图活动,体验数学思维的严谨性,发展形象思维。2、在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果。3、初步渗透运用勾股定理解决直角三角形相关的问题的数学方法。情感态度1、通过对勾股定理历史的了解,感受数学文化,激发学习热情。2、在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。......http://www.zhaojiaoan.com/soft/sort01/sort03/sort0157/down-12260.html三角形全等的条件——两角和一边课题:13.2§三角形全等的条件——两角和一边授课时数:一课时授课班级:八年级设计内容:三角形全等的条件——两角和一边1、学情分析:(1)学生的认识基础:学生基本明确了要判断两个三角形全等,至少需要三个要素,并且三个元素有一定的位置关系。(2)学生理解和掌握回感到困难,主要表现在:①想象力差,②用判断方法进行说理或证明思路混乱,不知从何下手,应用能力差。2、教学目标:1)知识目标:①使学生能灵活运用“角边角”规律及其角角边规律来判定三角形全等。②使学生会利用“角边角”规律及其角角边规律进行简单的证明。过程与方法:在探索三角形全等的条件的活动过程中,让学生真正体会到两个三角形全等对应边、角之间的内在联系,形成符号与语言......

5,有没有那种很详细的初中数学教案可以下载的

直接浏览数学书的出版社网站,一般都有的
试试12999数学网吧
数学教学教案 勾股定理(二)一、学习目标1.会用勾股定理进行简单的计算。2.树立数形结合的思想、分类讨论思想。二、重点、难点1.重点:勾股定理的简单计算。2.难点:勾股定理的灵活运用。三、学习过程1、勾股定理的具体内容是(用几何语言表示)2、勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。让学生把前面学过的知识和新知识综合运用,提高综合能力。3、在rt△abc,∠c=90°⑴已知a=b=5,求c。⑵已知a=1,c=2, 求b。⑶已知c=17,b=8, 求a。⑷已知a:b=1:2,c=5, 求a。⑸已知b=15,∠a=30°,求a,c。4、已知:如图,等边△abc的边长是6cm。⑴求等边△abc的高。 ⑵求s△abc。四、练习1.填空题⑴在rt△abc,∠c=90°,a=8,b=15,则c= 。⑵在rt△abc,∠b=90°,a=3,b=4,则c= 。⑶在rt△abc,∠c=90°,c=10,a:b=3:4,则a= ,b= 。⑷如果c=10,a-b=2,则b= 。⑸如果a、b、c是连续整数,则a+b+c= 。⑹如果b=8,a:c=3:5,则c= 。(7)一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。(8)已知直角三角形的两边长分别为3cm和5cm,,则第三边长为 。(9)已知等边三角形的边长为2cm,则它的高为 ,面积为 。2.已知:如图,在△abc中,∠c=60°,ab= ,ac=4,ad是bc边上的高,求bc的长。 3.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。4.已知:如图,四边形abcd中,ad∥bc,ad⊥dc, ab⊥ac,∠b=60°,cd=1cm,求bc的长。

6,求初中数学课题课教学设计

课题课教学设计表选题名称 设计一些地板的平面镶嵌图授课对象 全体学生 课时 1课时选题中所包含的数学知识 1、 先由三角形内角和,再顺势推广到多边形内角和公式的计算,最后将内角和公式应用于镶嵌.2、 正多边形的有关性质,每个内角度数的计算公式为 3、 ,理解一种或两种正多边形是否能够镶嵌成平面图形的原因4、 能镶嵌成平面图案的多边形应满足的条件;.5、 旋转、平移、反射知识的实际运用教学活动设计 一. 创设情景,小明家刚买了新房,准备装修,小明想把地面铺上地板砖, 小明来到建材市场,看到有正三角形、正四边形、正五边形、正六边形、正八边形等形状的地板砖.请你帮小明想想,他可以买哪种形状的地板砖?为什么?,你能用不同的地板砖帮小明设计一些美丽的地板图案吗?二、操作实践。活动1: 分组动手实验(1)出示问题:用事先剪好的正三角形,正方形,正五边形,正六边形纸片进行实验,学生迅速拼出图形。思考:如果用其中一种正多边形镶嵌,哪些正多边形能镶嵌成一个平面图形.?(2)小组汇报:通过实践发现只有正三角形、正方形和正六边形三种行而正五边形不行,为什么呢?(3)因为要使平面完全镶嵌不留空隙,则正多边形的每个内角的度数必须能整除 )(4)师生共同总结 规律:用同一种正多边形进行覆盖时,关键是看正多边形的一个内角,当周角360度是一个内角的整数倍时,即一个内角的正整数倍是360度时,这种正多边形可以覆盖平面,否则不可以. 活动2:出示问题: 大家用两种边长相等的正多边形的纸片拼接在一起进行组合,情况又如何呢?”实践得出:(1) 用三个正三角形和两个正方形能覆盖平面 (2) 用两个正三角形和两个正六边形能覆盖平面. (3) 用四个正三角形和一个正六边形也能覆盖平面.. 活动3:出示问题如果不是正多边形,而是一般的平面图形又如何呢?比如用任意一种三角形、四边形能铺满地面吗?探究发现:(1)任意三角形都可以用以镶嵌成一个平面;(2)任意形状的四边形都能通过旋转、反射和平移来镶嵌成一个平面;活动4,预设可能提出的问题:(1)、能否用三种或三种以上的正多边形进行镶嵌呢?(2)用正多边形进行镶嵌,有什么规律可循吗?三、教师归纳小结:(板书)平面镶嵌的条件是:(1) 用同一种正多边形镶嵌平面的条件是:当正多边形的一个内角的正整数倍是360时.这种正多边形可以覆盖平面.(2) 用两种边长相等的正多边形镶嵌平面的条件是每个拼接点处各角的和为360度。(3) 在一般的多边形中,只有三角形和四边形可以覆盖平面.四,课后实践探究你能否设计出一个用边长相等的三种不同的正多边形的地砖铺地面的方案吗?把你设计的方案画成草图。

7,初中数学教学设计预案

一、学习目标与任务 (一)学习目标描述(知识与技能、过程与方法、情感态度与价值观) 本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理。 1.使学生了解直角三角形相似定理的证明方法并会应用.  2.继续渗透和培养学生对类比数学思想的认识和理解.  3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.  4.通过学习,了解由特殊到一般的唯物辩证法的观点.  (二)学习内容与学习任务说明(学习内容的选择、学习形式的确定、学习结果的描述、学习重点及难点的分析) 教法建议:  1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出相似三角形的概念  2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念  3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识  4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解  5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解  6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握…… (三)问题设计(能激发学生在教学活动中思考所学内容的问题) 从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识   二、学习者特征分析(说明学生的学习特点、学习习惯、学习交往特点等) 1.学生是海南乐东冲坡中学初三(12)的“远程教育班”学生 2.每位学生都有制作电脑画的能力。能进行网络浏览。 3.学生思维灵活,感情丰富,有较强的合作意识,动手操作能力。
1
初中数学教学设计(预案)一、学习目标与任务 (一)学习目标描述(知识与技能、过程与方法、情感态度与价值观) 本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理。1.使学生了解直角三角形相似定理的证明方法并会应用.2.继续渗透和培养学生对类比数学思想的认识和理解.3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.4.通过学习,了解由特殊到一般的唯物辩证法的观点.  (二)学习内容与学习任务说明(学习内容的选择、学习形式的确定、学习结果的描述、学习重点及难点的分析) 教法建议:1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出相似三角形的概念2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握…… (三)问题设计(能激发学生在教学活动中思考所学内容的问题) 从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识   二、学习者特征分析(说明学生的学习特点、学习习惯、学习交往特点等) 1.学生是海南乐东冲坡中学初三(12)的“远程教育班”学生2.每位学生都有制作电脑画的能力。能进行网络浏览。3.学生思维灵活,感情丰富,有较强的合作意识,动手操作能力。
答: 初中数学教学设计(预案) 一、学习目标与任务 (一)学习目标描述(知识与技能、过程与方法、情感态度与价值观) 本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理。 1.使学生了解直角三角形相似定理的证明方法并会应用.  2.继续渗透和培养学生对类比数学思想的认识和理解.  3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.  4.通过学习,了解由特殊到一般的唯物辩证法的观点.  (二)学习内容与学习任务说明(学习内容的选择、学习形式的确定、学习结果的描述、学习重点及难点的分析) 教法建议:  1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出相似三角形的概念  2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念  3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识  4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解  5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解  6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握…… (三)问题设计(能激发学生在教学活动中思考所学内容的问题) 从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识   二、学习者特征分析(说明学生的学习特点、学习习惯、学习交往特点等) 1.学生是海南乐东冲坡中学初三(12)的“远程教育班”学生 2.每位学生都有制作电脑画的能力。能进行网络浏览。 3.学生思维灵活,感情丰富,有较强的合作意识,动手操作能力。

文章TAG:初中  初中数学  数学  数学教学  初中数学教学设计万能模板下载  
下一篇