本文目录一览

1,怎么归纳高中物理所有模型

用的是 (1)正切三角涵数;sinθ = sinθ/2)=(1-cosθ)/(1+cosθ);cos#178;=1#47: 1+tan#178,力学里面常见到 (2)相似 +余弦定理 力学里面常见到 (3)数列法(少见) (4)空间坐标向量; 半角 tan(θ#47:如给出一个正方体任选三个顶点挂上三

怎么归纳高中物理所有模型

2,高中物理电磁学模型总结

电场:几种典型场的电场线;几种典型场的等势面;平行板电容器;带电粒子在电场中平衡;带电粒子在电场中加速;带电粒子在电场中偏转恒定电流:电流表的内外接;滑动变阻器的分压和限流接法;测定金属电阻率;伏安法测电阻;电流表改装电压表;测电池的电动势和内阻;简单逻辑电路;电路的简化;电路动态分析;含有电容器的电路分析;电源如何获得最大输出功率;电路故障分析磁场:直线电流的磁场(三图);环形电流的磁场(三图);通电螺线管的磁场(三图);磁场对通电导线的作用(安培力);磁场对运动电荷的作用(洛伦兹力);速度选择器;回旋加速器;带电离子的磁场中运动电磁感应:磁通量;法拉第电磁感应定律;导线切割磁感线;电磁感应的本质;楞次定律;无源滑轨;日光灯工作原理;感生电动势;动生电动势;感动同生电动势;交变电流:远距离输电;变压器工作原理;交变电流的定义和特点;峰值;有效值;瞬时值;平均值;电磁波原理

高中物理电磁学模型总结

3,高中物理 经典模型

1、物质模型。物质可分为实体物质和场物质。   实体物质模型有力学中的质点、轻质弹簧、弹性小球等;电磁学中的点电荷、平行板电容器、密绕螺线管等;气体性质中的理想气体;光学中的薄透镜、均匀介质等。   场物质模型有如匀强电场、匀强磁场等都是空间场物质的模型。   2、状态模型。研究流体力学时,流体的稳恒流动(状态);研究理想气体时,气体的平衡态;研究原子物理时,原子所处的基态和激发态等都属于状态模型。   3、过程模型。在研究质点运动时,如匀速直线运动、匀变速直线运动、匀速圆周运动、平抛运动、简谐运动等;在研究理想气体状态变化时,如等温变化、等压变化、等容变化、绝热变化等;还有一些物理量的均匀变化的过程,如某匀强磁场的磁感应强度均匀减小、均匀增加等;非均匀变化的过程,如汽车突然停止都属于理想的过程模型。
子弹打木块模型,
双星模型,主意质量比,周期角速度一样;轻杆模型,最高点可拉可压,最高点最小速度可以为0,无条件限制的话无最大速度;细绳模型,全过程(包括最高点)只能拉不能压,最少速度为gl的开方,无条件限制的话无最大速度,最高点受重力和拉力(拉力可以为0,方向竖直向下),最低点受重力和拉力(拉力一定大于重力,方向竖直向上);小船过河,当船头方向垂直岸时时间最短,船速大于流速,可垂直过河,最少位移为河宽,小于则不可;弹簧,注意能量守恒和动量守恒,注意条件;子弹模型主要考动量守恒,注意有无穿过物体(留在物体时记得用总质量计算),偶尔考能量守恒;发动机,电能转成动能,关于力的用左手,其他用右手

高中物理 经典模型

4,高中物理常见模型种类归纳越详细越好

⒈"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度. ⒉"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题. ⒊"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法. ⒋"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等. ⒌"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系. ⒍"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题. ⒎"斜面"模型:运动规律.三大定律.数理问题. ⒏"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动). ⒐"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题). ⒑"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法. ⒒"人船"模型:动量守恒定律.能量守恒定律.数理问题. ⒓"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题. ⒔"爆炸"模型:动量守恒定律.能量守恒定律. ⒕"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法. ⒖"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用. ⒗"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题. ⒘"磁流发电机"模型:平衡与偏转.力和能问题. ⒙"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题. ⒚"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性. ⒛电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度. 21.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律. 22.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题. 23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题. 24.远距离输电升压降压的变压器模型.

5,高一必修一的物理总结

1、匀变速直线运动: 基本规律: Vt = V0 + a t X = vo t + a t2几个重要推论: (1) Vt2 - V02 = 2ax (匀加速直线运动:a为正值 匀减速直线运动:a为负值) A x a t B (2) A B段中间时刻的即时速度: Vt/ 2 = = (3) AB段位移中点的即时速度: Vx/2 = 匀速:Vt/2 =Vx/2 ; 匀加速或匀减速直线运动:Vt/2 <Vx/2 (4) 初速为零的匀加速直线运动,在1t 、2t、3t&shy;……nt内的位移之比为12:22:32……n2; 在第1t 内、第 2t内、第3t内……第nt内的位移之比为1:3:5……(2n-1); 在第1x内、第2x内、第3x内……第nx内的时间之比为1: : ……( (5) 初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:Dx = aT2 (a一匀变速直线运动的加速度 T一每个时间间隔的时间) 2、自由落体运动:特殊的匀加速直线运动 Vt = g t X = g t2 ★竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动。全过程是初速度为VO、加速度为-g的匀减速直线运动。 (1)上升最大高度: H = (2) 上升的时间: t= (3) 上升、下落经过同一位置时的加速度相同,而速度等值反向 (4) 上升、下落经过同一段位移的时间相等。 (5) 从抛出到落回原位置的时间:t = (6) 适用全过程的公式: X = Vo t 一 g t2 Vt = Vo一g t Vt2 一Vo2 = 一2 gX ( X、Vt的正、负号的理解) 3、重力: G = mg (g随高度、纬度、地质结构而变化) 4、胡克定律: F = Kx (x为伸长量或压缩量,K为劲度系数,只与弹簧的原长、粗细和材料有关) 5 、求F 1、F2 的合力的公式: F= 注意: (1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ú F1-F2 ú £ F£ F1 +F2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 6、物体平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力 为零。 ?F=0 或?Fx=0 ?Fy=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力(一个力)的合力一定等值反向 (2 ) 有固定转动轴物体的平衡条件: 力矩代数和为零. 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 7、摩擦力的公式: (1 ) 滑动摩擦力: f= mFN 说明 : a、FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G b、为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿运动定律求解,与正压力无关. 大小范围: O£ f静£ fm (fm为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反。 b、摩擦力可以作正功,也可以作负功,还可以不作功。 c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 8、 牛顿第二定律: F合 = ma 或者 ?Fx = m ax ?Fy = m ay

6,跪求高一物理必修一知识结构总结

第一章 运动的描述一、 基本概念1、 质点2、 参考系3、 坐标系4、 时刻和时间间隔5、 路程:物体运动轨迹的长度6、 位移:表示物体位置的变动。可用从起点到末点的有向线段来表示,是矢量。 位移的大小小于或等于路程。7、 速度:物理意义:表示物体位置变化的快慢程度。分类 平均速度: 方向与位移方向相同瞬时速度:与速率的区别和联系 速度是矢量,而速率是标量平均速度=位移/时间,平均速率=路程/时间瞬时速度的大小等于瞬时速率8、 加速度物理意义:表示物体速度变化的快慢程度定义: (即等于速度的变化率)方向:与速度变化量的方向相同,与速度的方向不确定。(或与合力的方向相同)二、 运动图象(只研究直线运动)1、x—t图象(即位移图象)(1)、纵截距表示物体的初始位置。(2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体静止,曲线表示物体作变速直线运动。(3)、斜率表示速度。斜率的绝对值表示速度的大小,斜率的正负表示速度的方向。2、v—t图象(速度图象)(1)、纵截距表示物体的初速度。(2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体作匀速直线运动,曲线表示物体作变加速直线运动(加速度大小发生变化)。(3)、纵坐标表示速度。纵坐标的绝对值表示速度的大小,纵坐标的正负表示速度的方向。(4)、斜率表示加速度。斜率的绝对值表示加速度的大小,斜率的正负表示加速度的方向。(5)、面积表示位移。横轴上方的面积表示正位移,横轴下方的面积表示负位移。三、实验:用打点计时器测速度1、两种打点即使器的异同点2、纸带分析;(1)、从纸带上可直接判断时间间隔,用刻度尺可以测量位移。(2)、可计算出经过某点的瞬时速度(3)、可计算出加速度第二章 匀变速直线运动的研究一、 基本关系式v=v0+atx=v0t+1/2at2v2-vo2=2axv=x/t=(v0+v)/2二、 推论1、 vt/2=v=(v0+v)/22、vx/2= 3、△x=at2 { xm-xn=(m-n)at2 }4、初速度为零的匀变速直线运动的比例式应用基本关系式和推论时注意:(1)、确定研究对象在哪个运动过程,并根据题意画出示意图。(2)、求解运动学问题时一般都有多种解法,并探求最佳解法。三、两种运动特例(1)、自由落体运动:v0=0 a=g v=gt h=1/2gt2 v2=2gh(2)、竖直上抛运动;v0=0 a=-g四、关于追及与相遇问题1、寻找三个关系:时间关系,速度关系,位移关系。两物体速度相等是两物体有最大或最小距离的临界条件。2、处理方法:物理法,数学法,图象法。五、理解伽俐略科学研究过程的基本要素。第三章 相互作用一、 三种常见的力1、 重力:由于地球对物体的吸引而产生的。大小:G=mg,方向:竖直向下,作用点:重心(重力的等效作用点)2、弹力(1)、形变、弹性形变、定义等。(2)、产生条件:(3)、拉力、支持力、压力。(按照力的作用效果来命名的)(4)、弹簧的弹力的大小和方向,胡克定律F=kx(5)、可用假设法来判断是否存在弹力。3、摩擦力(1)、静摩擦力: ①、产生条件 ②、方向判断 ③、大小要用“力的平衡”或“牛顿运动定律”来解。(2)滑动摩擦力:①、产生条件 ②、方向判断 ③、大小:f=uN。也可用“力的平衡”或“牛顿运动定律”来解。(3)、可用假设法来判断是否存在摩擦力。二、力的合成1、定义;由分力求合力的过程。2、合成法则:平行四边形定则或三角形定则。3、求合力的方法①、作图法(用刻度尺和量角器) ②、计算法(通常是利用直角三角形)2、 合力与分力的大小关系三、力的分解1、 分解法则:平行四边形定则或三角形定则、2、 分解原则:按照实际作用效果分解(即已知两分力的方向)3、 把一个已知力分解为两个分力①、 已知两个分力的方向,求两个分力的大小。(解是唯一的)②、 已知一个分力的大小和方向,求另一个分力的大小和方向,(解是唯一的)(注意:通过作平行四边形或三角形判断)4、 合力和分力是“等效替代”的关系。三、 实验:探究求合力的方法(或“验证平行四边形定则”)第四章 牛顿运动定律一、 牛顿第一定律1、 内容:(揭示物体不受力或合力为零的情形)2、 两个概念:①、力②、惯性:(一切物体都具有惯性,质量是惯性大小的唯一量)二、牛顿第二定律1、内容:(不能从纯数学的角度表述)2、公式:F合=ma3、理解牛顿第二定律的要点: ①、式中F是物体所受的一切外力的合力。②、矢量性 ③、瞬时性 ④、独立性 ⑤、相对性三、牛顿第三定律作用力和反作用力的概念1、 内容2、 作用力和反作用力的特点:①等值、反向、共线、异点 ②瞬时对应 ③性质相同 ④各自产生其作用效果3、 一对相互作用力与一对平衡力的异同点四、 力学单位制1、 力学基本物理量:长度(l) 质量(m) 时间(t)力学基本单位: 米(m) 千克(kg) 秒(s)2、 应用:用单位判断结果表达式,能肯定错误(但不能肯定正确)五、 动力学的两类问题。1、已知物体的受力情况,求物体的运动情况(v0 v t x )2、已知物体的运动情况,求物体的受力情况( F合 或某个分力)3、应用牛顿第二定律解决问题的一般思路(1)明确研究对象。(2)对研究对象进行受力情况分析,画出受力示意图。(3)建立直角坐标系,以初速度的方向或运动方向为正方向,与正方向相同的力为正,与正方向相反的力为负。在Y轴和X轴分别列牛顿第二定律的方程。(4)解方程时,所有物理量都应统一单位,一般统一为国际单位。4、分析两类问题的基本方法(1)抓住受力情况和运动情况之间联系的桥梁——加速度。(2)分析流程图六、 平衡状态、平衡条件、推论1、 处理方法:解三角形法(合成法、分解法、相似三角形法、封闭三角形法)和正交分解法2、 若物体受三力平衡,封闭三角形法最简捷。若物体受四力或四力以上平衡,用正交分解法七、 超重和失重1、 超重现象和失重现象2、 超重指加速度向上(加速上升和减速下降),超了ma;失重指加速度向下(加速下降和减速上升),失ma。

7,高中物理必修一各章节知识点及公式

高一上 物理期末考试知识点复习提纲 专题一:运动的描述 【知识要点】 1.质点(A)(1)没有形状、大小,而具有质量的点。 (2)质点是一个理想化的物理模型,实际并不存在。 (3)一个物体能否看成质点,并不取决于这个物体的大小,而是看在所研究的问题中物体的形状、大小和物体上各部分运动情况的差异是否为可以忽略的次要因素,要 。 2.参考系(A)(1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。 (2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做 参考系。 对参考系应明确以下几点: ①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的。 ②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。 ③因为今后我们主要讨论地面上的物体的运动,所以通常取地面作为参照系 3.路程和位移(A) (1)位移是表示质点位置变化的物理量。路程是质点运动轨迹的长度。 (2)位移是矢量,可以用以初位置指向末位置的一条有向线段来表示。因此,位移的大小等于物体的初位置到末位置的直线距离。路程是标量,它是质点运动轨迹的长度。因此其大小与运动路径有关。 (3)一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单一方向的直线运动时,路程与位移的大小才相等。图1-1中质点轨迹ACB的长度是路程,AB是位移S。 (4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说某人从O点起走了50m路,我们就说不出终了位置在何处。 4、速度、平均速度和瞬时速度(A) (1)表示物体运动快慢的物理量,它等于位移s跟发生这段位移所用时间t的比值。即v=s/t。速度是矢量,既有大小也有方向,其方向就是物体运动的方向。在国际单位制中,速度的单位是(m/s)米/秒。 (2)平均速度是描述作变速运动物体运动快慢的物理量。一个作变速运动的物体,如果在一段时间t内的位移为s, 则我们定义v=s/t为物体在这段时间(或这段位移)上的平均速度。平均速度也是矢量,其方向就是物体在这段时间内的位移的方向。 (3)瞬时速度是指运动物体在某一时刻(或某一位置)的速度。从物理含义上看,瞬时速度指某一时刻附近极短时间内的平均速度。瞬时速度的大小叫瞬时速率,简称速率 5、匀速直线运动(A) (1) 定义:物体在一条直线上运动,如果在相等的时间内位移相等,这种运动叫做匀速直线运动。 根据匀速直线运动的特点,质点在相等时间内通过的位移相等,质点在相等时间内通过的路程相等,质点的运动方向相同,质点在相等时间内的位移大小和路程相等。 (2) 匀速直线运动的x—t图象和v-t图象(A) (1)位移图象(s-t图象)就是以纵轴表示位移,以横轴表示时间而作出的反映物体运动规律的数学图象,匀速直线运动的位移图线是通过坐标原点的一条直线。 (2)匀速直线运动的v-t图象是一条平行于横轴(时间轴)的直线,如图2-4-1所示。 由图可以得到速度的大小和方向,如v1=20m/s,v2=-10m/s,表明一个质点沿正方向以20m/s的速度运动,另一个反方向以10m/s速度运动。 6、加速度(A) (1)加速度的定义:加速度是表示速度改变快慢的物理量,它等于速度的改变量跟发生这一改变量所用时间的比值,定义式:a= (2)加速度是矢量,它的方向是速度变化的方向 (3)在变速直线运动中,若加速度的方向与速度方向相同,则质点做加速运动; 若加速度的方向与速度方向相反,则则质点做减速运动. 7、用电火花计时器(或电磁打点计时器)研究匀变速直线运动(A) 1、实验步骤: (1)把附有滑轮的长木板平放在实验桌上,将打点计时器固定在平板上,并接好电路 (2)把一条细绳拴在小车上,细绳跨过定滑轮,下面吊着重量适当的钩码. (3)将纸带固定在小车尾部,并穿过打点计时器的限位孔 (4)拉住纸带,将小车移动至靠近打点计时器处,先接通电源,后放开纸带. (5)断开电源,取下纸带 (6)换上新的纸带,再重复做三次 2、常见计算: (1) , (2) 8、匀变速直线运动的规律(A) (1).匀变速直线运动的速度公式vt=vo+at(减速:vt=vo-at) (2). 此式只适用于匀变速直线运动. (3). 匀变速直线运动的位移公式s=vot+at2/2(减速:s=vot-at2/2) (4)位移推论公式: (减速: ) (5).初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的 时间间隔内的位移之差为一常数: s = aT2 (a----匀变速直线运动的 加速度 T----每个时间间隔的时间) 9、匀变速直线运动的x—t图象和v-t图象(A) 10、自由落体运动(A) (1) 自由落体运动 物体只在重力作用下从静止开始下落的运动,叫做自由落体运动。 (2) 自由落体加速度 (1)自由落体加速度也叫重力加速度,用g表示. (2)重力加速度是由于地球的引力产生的,因此,它的方向总是竖直向下.其大小在地球上不同地方略有不,在地球表面,纬度越高,重力加速度的值就越大,在赤道上,重力加速度的值最小,但这种差异并不大。 (3)通常情况下取重力加速度g=10m/s2 (3) 自由落体运动的规律vt=gt.H=gt2/2,vt2=2gh 专题二:相互作用与运动规律 【知识要点】 11、力(A)1.力是物体对物体的作用。 ⑴力不能脱离物体而独立存在。⑵物体间的作用是相互的。 2.力的三要素:力的大小、方向、作用点。 3.力作用于物体产生的两个作用效果。 ⑴使受力物体发生形变或使受力物体的运动状态发生改变。 4.力的分类⑴按照力的性质命名:重力、弹力、摩擦力等。 ⑵按照力的作用效果命名:拉力、推力、压力、支持力、动力、阻力、浮力、向心力等。 12、重力(A)1.重力是由于地球的吸引而使物体受到的力 ⑴地球上的物体受到重力,施力物体是地球。 ⑵重力的方向总是竖直向下的。 2.重心:物体的各个部分都受重力的作用,但从效果上看,我们可以认为各部分所受重力的作用都集中于一点,这个点就是物体所受重力的作用点,叫做物体的重心。 ① 质量均匀分布的有规则形状的均匀物体,它的重心在几何中心上。 ② 一般物体的重心不一定在几何中心上,可以在物体内,也可以在物体外。一般采用悬挂法。 3.重力的大小:G=mg 13、弹力(A) 1.弹力⑴发生弹性形变的物体,会对跟它接触的物体产生力的作用,这种力叫做弹力。 ⑵产生弹力必须具备两个条件:①两物体直接接触;②两物体的接触处发生弹性形变。 2.弹力的方向:物体之间的正压力一定垂直于它们的接触面。绳对物体的拉力方向总是沿着绳而指向绳收缩的方向,在分析拉力方向时应先确定受力物体。 3.弹力的大小 弹力的大小与弹性形变的大小有关,弹性形变越大,弹力越大. 弹簧弹力:F = Kx (x为伸长量或压缩量,K为劲度系数) 4.相互接触的物体是否存在弹力的判断方法 如果物体间存在微小形变,不易觉察,这时可用假设法进行判定. 14、摩擦力(A) (1 ) 滑动摩擦力: 说明 : a、FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G b、 为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力FN无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围: O

文章TAG:高中  高中物理  物理  必修  高中物理必修一模型归纳整理  
下一篇