本文目录一览

1,初中各学科知识点总结

http://zhidao.baidu.com/question/110453019.html

初中各学科知识点总结

2,初中化学知识点总结

好像没什么,初三主要学会仪器操作注意和一些化学物的特性和几种反应类型和反应式就没了
一. 物质与氧气的反应:(1)单质与氧气的反应: 1. 镁在空气中燃烧:2Mg + O2 点燃 2MgO 2. 铁在氧气中燃烧:3Fe + 2O2 点燃 Fe3O4 3. 铜在空气中受热:2Cu + O2 加热 2CuO 4. 铝在空气中燃烧:4Al + 3O2 点燃 2Al2O3 5. 氢气中空气中燃烧:2H2 + O2 点燃 2H2O 6. 红磷在空气中燃烧:4P + 5O2 点燃 2P2O5 7. 硫粉在空气中燃烧: S + O2 点燃 SO2 8. 碳在氧气中充分燃烧:C + O2 点燃 CO2 9. 碳在氧气中不充分燃烧:2C + O2 点燃 2CO (2)化合物与氧气的反应: 10. 一氧化碳在氧气中燃烧:2CO + O2 点燃 2CO2 11. 甲烷在空气中燃烧:CH4 + 2O2 点燃 CO2 + 2H2O 12. 酒精在空气中燃烧:C2H5OH + 3O2 点燃 2CO2 + 3H2O 化合反应 1、镁在空气中燃烧:2Mg + O2 点燃 2MgO 2、铁在氧气中燃烧:3Fe + 2O2 点燃 Fe3O4 3、铝在空气中燃烧:4Al + 3O2 点燃 2Al2O3 4、氢气在空气中燃烧:2H2 + O2 点燃 2H2O 5、红磷在空气中燃烧:4P + 5O2 点燃 2P2O5 6、硫粉在空气中燃烧: S + O2 点燃 SO2 7、碳在氧气中充分燃烧:C + O2 点燃 CO2 8、碳在氧气中不充分燃烧:2C + O2 点燃 2CO 9、二氧化碳通过灼热碳层: C + CO2 高温 2CO 10、一氧化碳在氧气中燃烧:2CO + O2 点燃 2CO2 11、二氧化碳和水反应(二氧化碳通入紫色石蕊试液):CO2 + H2O === H2CO3 12、生石灰溶于水:CaO + H2O === Ca(OH)2 13、无水硫酸铜作干燥剂:CuSO4 + 5H2O ==== CuSO4?5H2O 14、钠在氯气中燃烧:2Na + Cl2点燃 2NaCl 分解反应 15、实验室用双氧水制氧气:2H2O2 MnO2 2H2O+ O2↑ 16、加热高锰酸钾:2KMnO4 加热 K2MnO4 + MnO2 + O2↑ 17、水在直流电的作用下分解:2H2O 通电 2H2↑+ O2 ↑ 18、碳酸不稳定而分解:H2CO3 === H2O + CO2↑ 19、高温煅烧石灰石(二氧化碳工业制法):CaCO3 高温 CaO + CO2↑

初中化学知识点总结

3,初中物理知识点总结

第一章 声现象知识归纳 1 . 声音的发生:由物体的振动而产生。振动停止,发声也停止。 2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。 3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。 4.利用回声可测距离:S=1/2vt 5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。 6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。 7.可听声:频率在20Hz~20000Hz之间的声波:超声波:频率高于20000Hz的声波;次声波:频率低于20Hz的声波。 8. 超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。 9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。第二章 物态变化知识归纳 1. 温度:是指物体的冷热程度。测量的工具是温度计, 温度计是根据液体的热胀冷缩的原理制成的。 2. 摄氏温度(℃):单位是摄氏度。1摄氏度的规定:把冰水混合物温度规定为0度,把一标准大气压下沸水的温度规定为100度,在0度和100度之间分成100等分,每一等分为1℃。 3.常见的温度计有(1)实验室用温度计;(2)体温计;(3)寒暑表。 体温计:测量范围是35℃至42℃,每一小格是0.1℃。 4. 温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。 5. 固体、液体、气体是物质存在的三种状态。 6. 熔化:物质从固态变成液态的过程叫熔化。要吸热。 7. 凝固:物质从液态变成固态的过程叫凝固。要放热. 8. 熔点和凝固点:晶体熔化时保持不变的温度叫熔点;。晶体凝固时保持不变的温度叫凝固点。晶体的熔点和凝固点相同。 9. 晶体和非晶体的重要区别:晶体都有一定的熔化温度(即熔点),而非晶体没有熔点。 10. 熔化和凝固曲线图: 11.(晶体熔化和凝固曲线图) (非晶体熔化曲线图) 12. 上图中AD是晶体熔化曲线图,晶体在AB段处于固态,在BC段是熔化过程,吸热,但温度不变,处于固液共存状态,CD段处于液态;而DG是晶体凝固曲线图,DE段于液态,EF段落是凝固过程,放热,温度不变,处于固液共存状态,FG处于固态。 13. 汽化:物质从液态变为气态的过程叫汽化,汽化的方式有蒸发和沸腾。都要吸热。 14. 蒸发:是在任何温度下,且只在液体表面发生的,缓慢的汽化现象。 15. 沸腾:是在一定温度(沸点)下,在液体内部和表面同时发生的剧烈的汽化现象。液体沸腾时要吸热,但温度保持不变,这个温度叫沸点。 16. 影响液体蒸发快慢的因素:(1)液体温度;(2)液体表面积;(3)液面上方空气流动快慢。 17. 液化:物质从气态变成液态的过程叫液化,液化要放热。使气体液化的方法有:降低温度和压缩体积。(液化现象如:“白气”、雾、等) 18. 升华和凝华:物质从固态直接变成气态叫升华,要吸热;而物质从气态直接变成固态叫凝华,要放热。 19. 水循环:自然界中的水不停地运动、变化着,构成了一个巨大的水循环系统。水的循环伴随着能量的转移。第三章 光现象知识归纳 1. 光源:自身能够发光的物体叫光源。 2. 太阳光是由红、橙、黄、绿、蓝、靛、紫组成的。 3.光的三原色是:红、绿、蓝;颜料的三原色是:红、黄、蓝。 4.不可见光包括有:红外线和紫外线。特点:红外线能使被照射的物体发热,具有热效应(如太阳的热就是以红外线传送到地球上的);紫外线最显著的性质是能使荧光物质发光,另外还可以灭菌 。 1. 光的直线传播:光在均匀介质中是沿直线传播。 2.光在真空中传播速度最大,是3×108米/秒,而在空气中传播速度也认为是3×108米/秒。 3.我们能看到不发光的物体是因为这些物体反射的光射入了我们的眼睛。 4.光的反射定律:反射光线与入射光线、法线在同一平面上,反射光线与入射光线分居法线两侧,反射角等于入射角。(注:光路是可逆的) 5.漫反射和镜面反射一样遵循光的反射定律。 6.平面镜成像特点:(1) 平面镜成的是虚像;(2) 像与物体大小相等;(3)像与物体到镜面的距离相等;(4)像与物体的连线与镜面垂直。另外,平面镜里成的像与物体左右倒置。 7.平面镜应用:(1)成像;(2)改变光路。 8.平面镜在生活中使用不当会造成光污染。 球面镜包括凸面镜(凸镜)和凹面镜(凹镜),它们都能成像。具体应用有:车辆的后视镜、商场中的反光镜是凸面镜;手电筒的反光罩、太阳灶、医术戴在眼睛上的反光镜是凹面镜。第四章 光的折射知识归纳 光的折射:光从一种介质斜射入另一种介质时,传播方向一般发生变化的现象。 光的折射规律:光从空气斜射入水或其他介质,折射光线与入射光线、法线在同一平面上;折射光线和入射光线分居法线两侧,折射角小于入射角;入射角增大时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不改变。(折射光路也是可逆的) 凸透镜:中间厚边缘薄的透镜,它对光线有会聚作用,所以也叫会聚透镜。 凸透镜成像: (1)物体在二倍焦距以外(u>2f),成倒立、缩小的实像(像距:f<2f),如照相机; (2)物体在焦距和二倍焦距之间(f<2f),成倒立、放大的实像(像距:v>2f)。如幻灯机。 (3)物体在焦距之内(u 光路图:

初中物理知识点总结

4,初中物理知识归纳

电 学 1. 摩擦过的物体有了吸引轻小物体的性质,就说物体带了电. 用摩擦的方法使物体带电,叫摩擦起电. 2. 自然界存在着两种电荷,用绸子摩擦的玻璃带正电;用毛皮摩擦的橡胶棒带负电. 同种电荷相互排斥,异种电荷相互吸引. 3. 电荷的多少叫电量. 电荷的符号是“Q”,单位是库仑,简称库,用符号“C”表示. 4. 摩擦起电的原因是电荷发生转移. 电子带负电. 失去电子带正电;得到电子带负电. 5. 电荷的定向移动形成电流. 把正电荷移动的方向规定为电流的方向. 能够提供持续供电 的装制叫电源. 干电池、铅蓄电池都是电源. 直流电源的作用是在电源内部不断地使正极聚 集正电荷,负极聚集负电荷. 干电池、蓄电池对外供电时,是化学能转化为电能. 6. 容易导电的物体叫导体. 金属、石墨、人体、大地以及酸、碱、盐的水溶液等都是导体;不容易导电的物体叫绝缘体. 橡胶、玻璃、陶瓷、塑料、油等是绝缘体. 导体和绝缘体之间没有绝对的界限. 金属导电,靠的就是自由电子导电 . 7. 把电源、用电器、开关等用导线连接起来组成的电流的路径叫电路. 接通的电路电通路;断开的电路电开路;不经用电器而直接把导线连在电源两端叫短路. 用符号表示电路的连接的图叫电路图. 把元件逐个顺次连接起来组成的电路叫串联电路. 把元件并列地连接起来的电路叫并联电路. 8. 电流强度等于1秒钟内通过导体横截面的电量 . "I"表示电流, "Q"表示电量, "t"表示时间,则 I= . 1安=1库/秒. 1安(A)=1000毫安(mA);1毫安(mA)=1000微安(μA); 9. 测量电流的仪表叫电流表. 实验室用的电流表一般有两个量程和三个接线柱,两个量程分别是 0~0 .6安和 0~3安;接0~0 .6安时每大格为0.2安,每小格为0.02安;接0~3安时每大格为1安,每小格为0.1安. 10. 电流表使用时:①电流表要串联在电路中;②“+”、“-”接线柱接法要正确;③被测电流不要超过电流表的量程;④绝对不允许不经用电器而把电流表直接连到电源的两极上. 11.电压使电路中形成电流. 电压用符号“ U”表示,单位是伏,用“ V”表示. 1千伏(kV)=1000伏(V); 1伏(V)=1000毫伏(mV);1毫伏(mV)=1000微伏(μV). 一节干电池的电压为1.5伏 ,电子手表用氧化银电池每个也是1.5伏,铅蓄电池每个2伏 ,家庭电路电压为220伏 ,对人体的安全电压为不超过 36伏. 12. 测量电压的仪表叫电压表. 实验室用的电压表一般有两个量程和三个接线柱,两个量程分别是 0~3伏和 0~15伏;接0~3伏时每大格为1伏,每小格为0.1伏;接0~15伏时每大格为5伏,每小格为0.5伏. 13. 电压表使用时:①电流压表要并联在电路中;②“+”、“-”接线柱接法要正确;③被测电压不要超过电压表的量程. 14. 导体对电流的阻碍作用叫电阻. 电阻是导体本身的一种性质,它的大小决定导体的材料、长度和横截面积. 电阻的符号是“R”,单位是“欧姆”,单位符号是“Ω”. 1兆欧(MΩ)=1000千欧(kΩ);1千欧(kΩ)=1000欧(Ω). 15. 变阻器的作用是:改变电阻线在电路中的长度,就可以逐渐改变电阻,从而逐渐改变电流. 达到控制电路的目的. 16. 导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比. 这个结论叫欧姆定律. 用公式表示是:I= . 17. 电流在某段电路上所做的功,等于这段电路两端的电压、电路中的电流和通电时间的乘积. 公式是W=UIt. 电功的单位是“焦”.另外,1度=1千瓦时=3.6×106焦, “度”也是电功的单位. 18. 电流在单位时间内所做的功叫电功率. 公式是P=UI. 用电器正常工作时的电压叫额定电压,用电器在额定电压下的功率叫额定功率. 如"PZ220V 100W"表示的是额定电压为220伏,额定功率是100瓦. 19. 电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比, 跟通电时间成正比,这个结论叫焦耳定律. 公式是Q=I2Rt . 热量的单位是“焦”. 电热器是利用电来加热的设备. 如电炉、电烙铁、电熨斗等. 20. 家庭电路的两根电线,一根叫火线,一根叫零线. 火线和零线之间有220伏的电压,零线是接地的. 测量家庭电路中一定时间内消耗多少电能的仪表叫电能表. 它的单位是“度”. 21. 保险丝是由电阻率大、熔点低的铅锑合金制成. 它的作用是:在电路中的电流达到危险程度以前,自动切断电路. 更换保险丝时,应选用额定电流等于或稍大于正常工作时的电流的保险丝. 绝不能用铜丝代替保险丝. 22. 电路中电流过大的原因是:①发生短路;②用电器的总功率过大. 插座分两孔插座和三孔插座. 23. 测电笔的使用是:用手接触笔尾的金属体,笔尖接触电线,氖管发光的是火线,不发光的是零线. 24. 安全用电的原则是:不接触低压带电体;不靠近高压带电体. 特别要警惕不带电的物体带了电,应该绝缘的物体导了电. 电 磁 1. 永磁体包括人造磁体和天然磁体. 在水平面内自由转动的条形磁体或磁针,静止后总是一端指南(叫南极),一端指北(叫北极). 同名磁极相互排斥,异名磁极相互吸引. 原来没有磁性的物质得到磁性的过程叫磁化. 铁棒磁化后的磁性易消失,叫软磁铁;钢棒磁化后的磁性不易消失,叫硬磁铁. 2. 磁体周围空间存在着磁场. 磁场的基本性质是对放入其中的磁体产生磁力的作用, 因此可用小磁针鉴别某空间是否存在磁场. 3. 人们为了形象地描述磁场引入了磁感线(实际并不存在)。(采用了模型法)磁感线的疏密表示该处磁场的强弱,磁感线的方向(即切线方向)表示该处磁场方向。在磁体外部磁感线从北极出发回到南极,在磁体内部磁感线从南极指向北极。磁感线都是闭合曲线。 4.可以用安培定则(右手螺旋定则:右手握住导线,让伸直的大拇指方向跟电流方向一致,那么弯曲的四指所指的方向就是磁场方向)来判定电流产生的磁场方向。对于通电螺线管,用右手四个手指的环绕方向表示螺线管上的电流方向,则大拇指指向即为通电螺线管的N极。 5.电磁铁与永磁体相比有很多优点,它可以通过调整电流的有无、强弱、方向,达到控制磁场的有无、强弱、方向。利用电磁铁做成的电磁继电器(电铃)在自动控制和远距离操纵上常有应用。 6.通电导体在磁场中会受到力的作用,受力方向跟电流方向和磁感线方向有关。 7.直流电动机就是利用通电线圈在磁场里受到力的作用发生转动而制作的。在这一过程里把电能转化为机械能。在直流电动机里利用换向器改变线圈中电流方向,使线圈在磁场力作用下持续沿同一方向转动。 8.闭合回路的一部分导体,在磁场中作切割磁感线运动时,导体中会产生感应电流,这就是电磁感应现象。产生感应电流的条件是:一是电路闭合;二是导体做“切割”磁感线运动,即导体运动方向不能与磁感线平行。 9.发电机是利用闭合线圈在磁场中作切割磁感线转动时,产生感应电流的原理制成的,它是把机械能转化为电能的装置。 10.电池分化学电池(正极是铜帽碳棒)、水果电池、伏打电池(有里程碑意义,是真正意义上的电池)、蓄电池(有铅和硫酸,污染大)、太阳能电池(无污染,利用可再生能源),燃料电池 发电厂发电有以下几种方式:火力发电,水利发电,风力发电,核能发电,潮汐发电等 谢谢!!

5,初中数学知识点总结

初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。减法:减去一个数,等于加上这个数的相反数。乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。2、实数 无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。3、代数式代数式:单独一个数或者一个字母也是代数式。合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。幂的运算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一样。整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。方法:提公因式法、运用公式法、分组分解法、十字相乘法。分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。除法:除以一个分式等于乘以这个分式的倒数。加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1=3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)2、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C<B*C(C<0)如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立; 3、函数变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。②当B=0时,称Y是X的正比例函数。一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。二空间与图形A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。截一个几何体:用一个平面去截一个图形,截出的面叫做截面。视图:主视图,左视图,俯视图。多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。2、角线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。垂直平分线:垂直和平分一条线段的直线叫垂直平分线。垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。垂直平分线定理:性质定理:在垂直平分线上的点到该线段两端点的距离相等;判定定理:到线段2端点距离相等的点在这线段的垂直平分线上角平分线:把一个角平分的射线叫该角的角平分线。定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点性质定理:角平分线上的点到该角两边的距离相等判定定理:到角的两边距离相等的点在该角的角平分线上正方形:一组邻边相等的矩形是正方形性质:正方形具有平行四边形、菱形、矩形的一切性质判定:1、对角线相等的菱形2、邻边相等的矩形二、基本定理1、过两点有且只有一条直线 2、两点之间线段最短3、同角或等角的补角相等 4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理 三角形两边的和大于第三边16、推论 三角形两边的差小于第三边17、三角形内角和定理 三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理 四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论 任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论 夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0), 那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理 不在同一直线上的三点确定一个圆。110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理 一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交 d<r②直线L和⊙O相切 d=r③直线L和⊙O相离 d>r122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理 圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理 弦切角等于它所夹的弧对的圆周角129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离 d>R+r ②两圆外切 d=R+r③两圆相交 R-r<d<R+r(R>r)④两圆内切 d=R-r(R>r) ⑤两圆内含 d<R-r(R>r)136、定理 相交两圆的连心线垂直平分两圆的公共弦137、定理 把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长142、正三角形面积√3a/4 a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144、弧长计算公式:L=n兀R/180145、扇形面积公式:S扇形=n兀R^2/360=LR/2146、内公切线长= d-(R-r) 外公切线长= d-(R+r)

文章TAG:初中  知识  知识点  总结  初中知识点总结归纳  
下一篇