1,初中数学教学设计与特色案例评析的介绍

本书内容包括优秀教学设计、特色案例描述、典型案例评析、教学反思等,涉及语文、数学、英语、科学、艺术、体育、综合实践活动等学科。本书旨在为教师将新课程的理念转化为教学行为,创造性地设计教学以促进学生主动、高效、个性化地学习提供范例。本书选编的教学案例,内容具体详实,形式丰富多样,指导性、实用性、可读性强,对新课程实验区的教师和即将进行新课程实验的教师都有指导和帮助作用。

初中数学教学设计与特色案例评析的介绍

2,初中数学课堂教学设计与反思

最低0.27元/天开通百度文库会员,可在文库查看完整内容>原发布者:yzyong789基本信息课题作者及工作单位华师大版九年级上册第二十三章第3节:一元二次方程根与系数的关系杨志勇四川省巴中市平昌县土垭小学教材分析一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。学情分析1.学生已学习用求根公式法解一元二次方程,。2.本课的教学对象是初中三年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征,3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。教学目标1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数
您好! 我很认同上面一位老师的回答!
你好,提问者: 课堂的教学设计要以你所教授的内容和所教学生知识结构来制定的,不是任一个教学设计都适合每所学校或每个班级。更不可能适合每堂课的。我们要因材施教,更要因人施教。
1.反思教学,为进一步教学提供更好的依据。2.通过反思,发现教学中的问题,便于弥补。3.通过反思,发现学生的问题,便于指导今后的教学。

初中数学课堂教学设计与反思

3,设计一则以立体几何为内容的正式数学教育活动教案

本节课的内容是选自上海教育出版社《上海高级中学课本高三年级(试用本)》第十四、十五章立体几何知识的引言部分,属于策略性知识为主的数学分支起始课.认识空间图形,运用文字语言、图形语言、符号(集合)语言进行交流,掌握画空间图形直观图的基本技能,发展学生的空间想象能力、推理论证能力是新课程标准的基本要求.本节课教学内容的上位知识为初中平面几何的相关知识、高中阶段集合符号语言知识,学生具有推理论证的能力.为实现新课程目标,本节课将“Why、 What、 How”的教学理念融入其中.主要通过直观感知、从具体到抽象,引导学生认识人类生存的现实空间,激发学生学习立体几何的兴趣;帮助学生自主建构,明确立体几何即将学习的内容;在学习过程中引导学生领悟从平面几何向立体几何类比、初步体验“化曲为直”、“图形割补拼”的思想方法.在后续的课程中,会采用思维论证、度量计算等方法进一步建构立体几何体系.本课为立体几何的后续学习做了良好的铺垫.鉴于此,本节课的教学重点确定为:初步了解立体几何研究的主要内容和方法.主要内容包括:作图与识图;空间中基本元素(点、线、面)间的位置关系(线线、线面、面面关系);空间中基本元素(点、线、面)间的度量关系(距离、角、面积、体积等).主要思想方法体现在:命题和方法上的类比思想、空间问题到平面问题的转化与化归的思想.结合本节课内容,教学需要反映立体几何体系发展历史及其应用.在介绍历史上关于立体几何知识的各种数学思想发展和起源过程中,开阔学生自身眼界与视野,启迪学生创造的灵感,激发学生学习的热情.教学中沟通平面几何和立体几何的联系,建构立体几何的研究框架,充分运用信息技术展示空间图形,培养学生创新思维能力.二、教学目标设置新“课标”指出,学生能体验从现实世界中抽象出空间形式的过程,学习立体几何的基本知识和基本技能,认识简单几何体的基本特征,掌握研究立体几何问题的基本方法,发展学生的空间想象能力,为将来进一步学习空间几何打下基础.根据本章内容学习的特点、学习方法和能力的要求,这节立体几何序言课的教学目标设置如下:1.直观感受空间图形中的点、线、面间的位置关系和度量关系,了解立体几何的研究对象和内容.2.体验平面到空间、空间到平面的类比和转化思想,发展由直观到抽象,由平面到空间的想象能力.

设计一则以立体几何为内容的正式数学教育活动教案

4,求初中数学课题课教学设计

课题课教学设计表选题名称 设计一些地板的平面镶嵌图授课对象 全体学生 课时 1课时选题中所包含的数学知识 1、 先由三角形内角和,再顺势推广到多边形内角和公式的计算,最后将内角和公式应用于镶嵌.2、 正多边形的有关性质,每个内角度数的计算公式为 3、 ,理解一种或两种正多边形是否能够镶嵌成平面图形的原因4、 能镶嵌成平面图案的多边形应满足的条件;.5、 旋转、平移、反射知识的实际运用教学活动设计 一. 创设情景,小明家刚买了新房,准备装修,小明想把地面铺上地板砖, 小明来到建材市场,看到有正三角形、正四边形、正五边形、正六边形、正八边形等形状的地板砖.请你帮小明想想,他可以买哪种形状的地板砖?为什么?,你能用不同的地板砖帮小明设计一些美丽的地板图案吗?二、操作实践。活动1: 分组动手实验(1)出示问题:用事先剪好的正三角形,正方形,正五边形,正六边形纸片进行实验,学生迅速拼出图形。思考:如果用其中一种正多边形镶嵌,哪些正多边形能镶嵌成一个平面图形.?(2)小组汇报:通过实践发现只有正三角形、正方形和正六边形三种行而正五边形不行,为什么呢?(3)因为要使平面完全镶嵌不留空隙,则正多边形的每个内角的度数必须能整除 )(4)师生共同总结 规律:用同一种正多边形进行覆盖时,关键是看正多边形的一个内角,当周角360度是一个内角的整数倍时,即一个内角的正整数倍是360度时,这种正多边形可以覆盖平面,否则不可以. 活动2:出示问题: 大家用两种边长相等的正多边形的纸片拼接在一起进行组合,情况又如何呢?”实践得出:(1) 用三个正三角形和两个正方形能覆盖平面 (2) 用两个正三角形和两个正六边形能覆盖平面. (3) 用四个正三角形和一个正六边形也能覆盖平面.. 活动3:出示问题如果不是正多边形,而是一般的平面图形又如何呢?比如用任意一种三角形、四边形能铺满地面吗?探究发现:(1)任意三角形都可以用以镶嵌成一个平面;(2)任意形状的四边形都能通过旋转、反射和平移来镶嵌成一个平面;活动4,预设可能提出的问题:(1)、能否用三种或三种以上的正多边形进行镶嵌呢?(2)用正多边形进行镶嵌,有什么规律可循吗?三、教师归纳小结:(板书)平面镶嵌的条件是:(1) 用同一种正多边形镶嵌平面的条件是:当正多边形的一个内角的正整数倍是360时.这种正多边形可以覆盖平面.(2) 用两种边长相等的正多边形镶嵌平面的条件是每个拼接点处各角的和为360度。(3) 在一般的多边形中,只有三角形和四边形可以覆盖平面.四,课后实践探究你能否设计出一个用边长相等的三种不同的正多边形的地砖铺地面的方案吗?把你设计的方案画成草图。

5,谁能帮忙找一份高中数学教学案例

《正弦定理》教学案例分析 一、教学内容: 本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。 二、教材分析: 1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书.数学必修5》(A版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。 2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。 三、教学目标: 1、知识目标: 把握正弦定理,理解证实过程。 2、能力目标: (1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。 (2)增强学生的协作能力和数学交流能力。 (3)发展学生的创新意识和创新能力。 3、情感态度与价值观: (1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的爱好。 (2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。 四、教学设想: 本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下: 五、教学过程: (一)创设问题情景 课前放映一些有关军事题材的图片,并在课首给出引例:一天,我核潜艇A正在某海域执行巡逻任务,忽然发现其正东处有一敌艇B正以30海里/小时的速度朝北偏西40°方向航行。经研究,决定向其发射鱼雷给以威慑性打击。已知鱼雷的速度为60海里/小时,问怎样确定发射角度可击中敌舰? [设计一个学生比较感爱好的实际问题,吸引学生注重力,使其马上进入到研究者的角色中来!](二)启发引导学生数学地观察问题,构建数学模型。 用几何画板模拟演示鱼雷及敌舰行踪,在探讨鱼雷发射角度的过程中,抽象出一个解三角形问题: 1、考察角A的范围,回忆“大边对大角”的性质 2、让学生猜测角A的准确角度,由AC=2BC,从而B=2A从而抽象出一个雏形:3、测量角A的实际角度,与猜测有误差,从而产生矛盾:定性研究如何转化为定量研究?4、进一步修正雏形中的公式,启发学生大胆想象:以及等 [直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!](三)引导学生用“特例到一般”的研究方法,猜想数学规律。 提出问题:1、如何对以上等式进行检验呢?激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,筛选出能成立的等式2、那这一结论对任意三角形都适用吗?指导学生用刻度尺、圆规、计算器等工具对一般三角形进行验证。 3、让学生总坚固验结果,得出猜想: 在三角形中,角与所对的边满足关系[“特例→类比→猜想”是一种常用的科学的研究思路!](四)让学生进行各种尝试,探寻理论证实的方法。 提出问题:1、如何把猜想变成定理呢?使学生注重到猜想和定理的区别,强化学生思维的严密性。 2、怎样进行理论证实呢?培养学生的转化思想,通过作高转化为熟悉的直角三角形进行证实。 3、你能找出它们的比值吗?借以检验学生是否把握了以上的研究思路。用几何画板动画演示,找到比值,突破难点。 4、将猜想变为定理,并用以解决课首提出的问题,并进行适当的思想教育。 [学生成为发现者,成为创造者!让学生享受成功的喜悦!](五)反思总结,布置作业 1、正弦定理具有对称和谐美 2、“类比→实验→猜想→证实”是一种常用的研究问题的思路和方法 课下思考:三角形中还有其它的边角定量关系吗? 六、板书设计: 正弦定理
教学目标   (1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.  (2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.  (3)掌握直线方程各种形式之间的互化.  (4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.  (5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.  (6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法. 教学建议 1.教材分析(1)知识结构  由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.

6,初中数学教学设计预案

答: 初中数学教学设计(预案) 一、学习目标与任务 (一)学习目标描述(知识与技能、过程与方法、情感态度与价值观) 本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理。 1.使学生了解直角三角形相似定理的证明方法并会应用.  2.继续渗透和培养学生对类比数学思想的认识和理解.  3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.  4.通过学习,了解由特殊到一般的唯物辩证法的观点.  (二)学习内容与学习任务说明(学习内容的选择、学习形式的确定、学习结果的描述、学习重点及难点的分析) 教法建议:  1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出相似三角形的概念  2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念  3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识  4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解  5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解  6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握…… (三)问题设计(能激发学生在教学活动中思考所学内容的问题) 从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识   二、学习者特征分析(说明学生的学习特点、学习习惯、学习交往特点等) 1.学生是海南乐东冲坡中学初三(12)的“远程教育班”学生 2.每位学生都有制作电脑画的能力。能进行网络浏览。 3.学生思维灵活,感情丰富,有较强的合作意识,动手操作能力。
初中数学教学设计(预案)一、学习目标与任务 (一)学习目标描述(知识与技能、过程与方法、情感态度与价值观) 本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理。1.使学生了解直角三角形相似定理的证明方法并会应用.2.继续渗透和培养学生对类比数学思想的认识和理解.3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.4.通过学习,了解由特殊到一般的唯物辩证法的观点.  (二)学习内容与学习任务说明(学习内容的选择、学习形式的确定、学习结果的描述、学习重点及难点的分析) 教法建议:1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出相似三角形的概念2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握…… (三)问题设计(能激发学生在教学活动中思考所学内容的问题) 从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识   二、学习者特征分析(说明学生的学习特点、学习习惯、学习交往特点等) 1.学生是海南乐东冲坡中学初三(12)的“远程教育班”学生2.每位学生都有制作电脑画的能力。能进行网络浏览。3.学生思维灵活,感情丰富,有较强的合作意识,动手操作能力。
一、学习目标与任务 (一)学习目标描述(知识与技能、过程与方法、情感态度与价值观) 本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理。 1.使学生了解直角三角形相似定理的证明方法并会应用.  2.继续渗透和培养学生对类比数学思想的认识和理解.  3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.  4.通过学习,了解由特殊到一般的唯物辩证法的观点.  (二)学习内容与学习任务说明(学习内容的选择、学习形式的确定、学习结果的描述、学习重点及难点的分析) 教法建议:  1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出相似三角形的概念  2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念  3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识  4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解  5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解  6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握…… (三)问题设计(能激发学生在教学活动中思考所学内容的问题) 从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识   二、学习者特征分析(说明学生的学习特点、学习习惯、学习交往特点等) 1.学生是海南乐东冲坡中学初三(12)的“远程教育班”学生 2.每位学生都有制作电脑画的能力。能进行网络浏览。 3.学生思维灵活,感情丰富,有较强的合作意识,动手操作能力。
1

7,怎样进行初中数学教学设计

一.单元教学设计的意义 教学设计是我们教学中非常重要的环节。大家都知道做任何事情都需要做一个设计,有一个设计就会使我们做的更加主动。 单元设计,首先什么是单元,比如说一章,比如说一个模块,比如一个模块里的一块面,比如说一元二次方程这章,我们可以把它当作一个完整的内容来进行设计。当然,也可以做跨章节的内容的教学设计。比如说一次函数,我们可以把一次函数这章分为三块,一块是平面直角坐标系,函数知识初步,一块是一次函数的知识,第三块是反比例函数的内容。函数知识是初中的一个重点,怎么样对这些进行教学设计,我们有一个整体的思考非常重要。 另外,老师应该能够关注关于方法和能力方面的单元教学设计。比如计算,我们就可以考虑一下,作为一个计算能力,在初一、二年级里,怎么样进行设计。使得我们的学生从小学的水平,能够有一个明显的提升。我们可以分析一下,支持计算能力的,在课程中有哪些载体。然后在这些载体中,应该如何帮助学生提升他的计算能力。所以我想这样的一些思考,都是单元教学的设计的很重要的内容,与我们传统单元的教学设计的内容,需要开拓一点,视野开拓一点。在单元教学设计,有一个,或者有两个核心的主题词,第一个是整体,第二个是效率。 我觉得做好单元教学设计,会使你知道在什么时候,我讲到什么程度,我后面还会对这件事情有所解释的。当然现在对单元教学设计的思考范围还是更大一些。比如对有一些概念,比如说弧度的概念,我们也可以对他有一个单元的思考。因为绝不是说讲弧度的定义的时候,才会涉及到弧度。只能这样就无法向学生解释清楚为什么加人弧度概念等等,所以我们应该以一个整体的观点来思考我们整体的教学。这样会提高教学效率。 二.单元教学设计的含义 单元教学设计:对教材中的章或单元等相对完整、综合的教学内容进行教学设计。 一课时教学设计:对适合在一节课内实施的教学内容进行教学设计。 三.单元教学设计的原则与注意事项 (1)以单元或章为单位,体现各个知识点之间的逻辑关系 (2)体现单元学习的完整性 (3)体现单元学习的层次性 (4)多种教学形式相结合,教师主导、学生探究相结合 (5)注重单元内容的综合运用 (6)提供评价方法及模板…… 四.如何进行单元教学设计 (1)基本结构框架 (2)新课程标准指出:数学课程的设计,要充分考虑本学段学生数学学习的特点,符合学生的认知规律和心里特征,有利于激发学生的学习兴趣,引发学生的数学思考;充分考虑数学本身的特点,体现数学的实质;在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验数学问题、构建数学模型、寻求结果、解决问题的过程。 4.学生分析:习惯、态度、对学过内容的掌握 5.教材分析 (1)教材分了17个学时讲授,2个学时复习,写出具体课时安排 (2)可能遇到问题 6.教学设计的一些问题 (1)什么内容以教授为主 (2)如何利用学过的知识 (3)如何组织学生自主学习:利用符号语言梳理学过内容 (4)让学生总结一些好的案例:比较不同语言表述同一对象 (5)如何提示学生“实数和二次根式”在后面学习中的作用 (6)“实数和二次根式”将伴随学生经历从初中到高中学习的过渡,在教学设计中关注以下问题:①学生的学习习惯;②学生学好数学的信心;③帮助学生梳理学习过的内容 7.教学反思、总结 (1)收集一些教学案例 (2)与自己教学比较 (3)完成一个总结 (4)修订自己的教学设计
分式的基本性质 教学目标 1、认知目标:通过类比分数的基本性质,使学生理解和掌握分式的基本性质;掌握约分的方法和最简分式的化简方法。 2、能力目标:使学生学习类比的思想方法,培养类比转化的思维能力;使学生掌握分式的基本性质,培养正确进行分式变形的运算能力。 3、情感目标:通过与分数的类比,导出分式的基本性质,渗透事物是联系及变化发展的辨证关系。 即类比— —联系— —归纳— —发展。 教学重点及难点 重点是理解并掌握分式的基本性质。 难点是灵活运用分式的基本性质进行分式的恒等变形及最简分式的化简方法。 教学用具准备 教学流程设计 教学过程设计 一、 情景引入 1.观察 在括号内填写每一步骤的依据 计算: 解: ( ) ( ) [通过填空和观察,使学生明确分数的计算和化简实质是进行分数的通分和约分,而通分和约分的依据是分数的基本性质] 2.思考 问题(1):还记得分数的基本性质吗? 问题(2):分式是否也有这样的性质? [通过提问的方式先使学生回忆复习分数的基本性质,继而引导学生与分数的基本性质相类比,导出分式的基本性质,并让学生了解分式的基本性质是今后学习与研究分式变形的依据。] 3.讨论 (1)对照分数的基本性质,改写成分式的基本性质: 分式的分子与分母同时乘以(或除以)一个不为零的整式,分式的值不变,即: , 其中m、n为整式,且 (2)两者有何区别和联系? [通过讨论使学生理解从分数到分式是把“数”引伸到“式”.分数是分式的特殊情形。] 二、学习新课 1.概念辨析 分式中的a,b,m,n四个字母都表示整式,其中b必须含有字母,除a可等于零外,b,m,n都不能等于零.因为若b=0,分式无意义;若m=0或n=0,那么不论乘以或除以分式的分母,都将使分式无意义. 2.例题分析 例1: [通过此例(书上的例题,稍有改动)的练习,使学生初步熟悉分式的基本性质,并注意分式基本性质中的关键词语。继而引出约分和最简分式的概念。] 例2 [通过简单例题(书上例1)的练习,使学生能正确找出分子分母的相同因式,然后将分式化简。并归纳出将分式化简到最简分式的方法。] [通过例三的练习,向学生强调化简分式的最后结果应是最简分式。练习中涉及到分式的变号法则,是一个教学难点,可适当举例让学生体会,但不必特别强调和给出分式的变号法则这一名称。] 3.巩固练习 课后练习10.2 [第一题可在导出分式的基本性质后练习,第二、三、四题可在相应例题1、2、3讲解后练习。也可集中练习,教师可根据实际情况选择。] 三、问题拓展 (1) 对于分式的基本性质的应用学生较容易出错的情况辨析: (2) 对于利用分式的基本性质将分式的分子、分母化成整系数形式的习题,如不改变分式的值,把分式 中分子、分母的多项式各项系数化成整数,并使最高次项的系数为正. (3) 对于可将分式先化简再求值的题目的练习。 [以上这些问题可在学生学有余力的前提下,加深对分式的基本性质的理解和掌握。] 四、课堂小结 1、 分式的基本性质?分式的基本性质是分式变形和运算的理论依据。 2、 约分的方法?约分是实现化简分式的一种手段.通过约分将分式化成最简才是目的.而最简分式为分式间的进一步运算提供了便利条件。 五、作业布置 练习册10.2 教学设计说明 1、这一章的内容与前面的分数有点类似,所以本章的有些内容都是类比分数的知识来讲的,类比是发现新问题的一种有效的思维方法。这一节也不例外,运用启发式的教学原则,类比分数的基本性质来讲解分式的基本性质,在教学设计中强调让学生比较分式的基本性质和分数的基本性质的区别与联系,目的是使学生进一步明确分式的基本性质的特点,培养学生独立获取知识的能力。 2、关于例题与练习的安排是按照由易到难、由简单到复杂的认知规律和心理特征设计的。以使学生通过一道简单的分数加法计算回忆起通分和约分的依据是分数的基本性质,然后类比引出分数的基本性质。在初步熟悉分式的基本性质之后,通过例题和习题训练学生正确运用分式的基本性质的能力,接着可选择问题拓展的一些题目使学生能够根据问题特征,灵活运用分式的基本性质,同时,培养学生分析问题与解决问题的能力。 3、要加强对学生的训练。老师讲完例题后,要让学生自己做题,在做题过程中体会分式的基本性质和分式的变号法则,以加深理解,到后面的分式变形和分式运算才会运用自如。

文章TAG:中学数学教学设计案例  初中数学教学设计与特色案例评析的介绍  
下一篇