1,八年级数学教学设计

本学期,我从各方面严格要求自己,结合本班学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有计划、有组织、有步骤地开展,圆满地完成了教学任务。 一、认真备课。不但备学生,而且备教材、备教法。根据教学内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都做了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣的教具,课后及时对该课用出总结。 二、增强上课技能,提高数学教学质量。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生学得容易,学得轻松,觉得愉快,注意精神,培养学生多动口动手动脑的能力。 三、认真批改作业,布置作业有针对性,有层次性。对学生的作业批改及时,认真分析并记录学生的作业情况,将他们在作业过程出现的问题做出分类总结,进行透切的讲评,并针对有关情况及时改进教学方法,做到有的放矢。 四、做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,同时加大了对后进生的辅导的力度。对后进生的辅导,并不限于学生知识性的辅导,更重要的是学生思想的辅导,提高后进生的成绩,首先解决他们的心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。 五、积极推进素质教育。为此,我在教学工作中注意了能力的培养,把传授知识、技能和发展智力、能力结合起来,在知识层面上注入了思想情感教育的因素,发挥学生的创新意识和创新能力。让学生的各种素质都得到有较的发展和培养。 一份耕耘,一份收获。良好的成绩将为我今后工作带来更大的动力。不过也应该清醒地认识到工作中存在的不足之处。教学工作苦乐相伴,我将一如既往地勤勉,务实地工作,我将本着“勤学、善思、实干”的准则,一如既往,再接再厉,把工作搞得更好。

八年级数学教学设计

2,初中数学课堂教学设计与反思

最低0.27元/天开通百度文库会员,可在文库查看完整内容>原发布者:yzyong789基本信息课题作者及工作单位华师大版九年级上册第二十三章第3节:一元二次方程根与系数的关系杨志勇四川省巴中市平昌县土垭小学教材分析一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。学情分析1.学生已学习用求根公式法解一元二次方程,。2.本课的教学对象是初中三年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征,3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。教学目标1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数
您好! 我很认同上面一位老师的回答!
你好,提问者: 课堂的教学设计要以你所教授的内容和所教学生知识结构来制定的,不是任一个教学设计都适合每所学校或每个班级。更不可能适合每堂课的。我们要因材施教,更要因人施教。
1.反思教学,为进一步教学提供更好的依据。2.通过反思,发现教学中的问题,便于弥补。3.通过反思,发现学生的问题,便于指导今后的教学。

初中数学课堂教学设计与反思

3,设计一则以立体几何为内容的正式数学教育活动教案

本节课的内容是选自上海教育出版社《上海高级中学课本高三年级(试用本)》第十四、十五章立体几何知识的引言部分,属于策略性知识为主的数学分支起始课.认识空间图形,运用文字语言、图形语言、符号(集合)语言进行交流,掌握画空间图形直观图的基本技能,发展学生的空间想象能力、推理论证能力是新课程标准的基本要求.本节课教学内容的上位知识为初中平面几何的相关知识、高中阶段集合符号语言知识,学生具有推理论证的能力.为实现新课程目标,本节课将“Why、 What、 How”的教学理念融入其中.主要通过直观感知、从具体到抽象,引导学生认识人类生存的现实空间,激发学生学习立体几何的兴趣;帮助学生自主建构,明确立体几何即将学习的内容;在学习过程中引导学生领悟从平面几何向立体几何类比、初步体验“化曲为直”、“图形割补拼”的思想方法.在后续的课程中,会采用思维论证、度量计算等方法进一步建构立体几何体系.本课为立体几何的后续学习做了良好的铺垫.鉴于此,本节课的教学重点确定为:初步了解立体几何研究的主要内容和方法.主要内容包括:作图与识图;空间中基本元素(点、线、面)间的位置关系(线线、线面、面面关系);空间中基本元素(点、线、面)间的度量关系(距离、角、面积、体积等).主要思想方法体现在:命题和方法上的类比思想、空间问题到平面问题的转化与化归的思想.结合本节课内容,教学需要反映立体几何体系发展历史及其应用.在介绍历史上关于立体几何知识的各种数学思想发展和起源过程中,开阔学生自身眼界与视野,启迪学生创造的灵感,激发学生学习的热情.教学中沟通平面几何和立体几何的联系,建构立体几何的研究框架,充分运用信息技术展示空间图形,培养学生创新思维能力.二、教学目标设置新“课标”指出,学生能体验从现实世界中抽象出空间形式的过程,学习立体几何的基本知识和基本技能,认识简单几何体的基本特征,掌握研究立体几何问题的基本方法,发展学生的空间想象能力,为将来进一步学习空间几何打下基础.根据本章内容学习的特点、学习方法和能力的要求,这节立体几何序言课的教学目标设置如下:1.直观感受空间图形中的点、线、面间的位置关系和度量关系,了解立体几何的研究对象和内容.2.体验平面到空间、空间到平面的类比和转化思想,发展由直观到抽象,由平面到空间的想象能力.

设计一则以立体几何为内容的正式数学教育活动教案

4,有没有那种很详细的初中数学教案可以下载的

直接浏览数学书的出版社网站,一般都有的
试试12999数学网吧
数学教学教案 勾股定理(二)一、学习目标1.会用勾股定理进行简单的计算。2.树立数形结合的思想、分类讨论思想。二、重点、难点1.重点:勾股定理的简单计算。2.难点:勾股定理的灵活运用。三、学习过程1、勾股定理的具体内容是(用几何语言表示)2、勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。让学生把前面学过的知识和新知识综合运用,提高综合能力。3、在rt△abc,∠c=90°⑴已知a=b=5,求c。⑵已知a=1,c=2, 求b。⑶已知c=17,b=8, 求a。⑷已知a:b=1:2,c=5, 求a。⑸已知b=15,∠a=30°,求a,c。4、已知:如图,等边△abc的边长是6cm。⑴求等边△abc的高。 ⑵求s△abc。四、练习1.填空题⑴在rt△abc,∠c=90°,a=8,b=15,则c= 。⑵在rt△abc,∠b=90°,a=3,b=4,则c= 。⑶在rt△abc,∠c=90°,c=10,a:b=3:4,则a= ,b= 。⑷如果c=10,a-b=2,则b= 。⑸如果a、b、c是连续整数,则a+b+c= 。⑹如果b=8,a:c=3:5,则c= 。(7)一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。(8)已知直角三角形的两边长分别为3cm和5cm,,则第三边长为 。(9)已知等边三角形的边长为2cm,则它的高为 ,面积为 。2.已知:如图,在△abc中,∠c=60°,ab= ,ac=4,ad是bc边上的高,求bc的长。 3.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。4.已知:如图,四边形abcd中,ad∥bc,ad⊥dc, ab⊥ac,∠b=60°,cd=1cm,求bc的长。

5,求讲解初中数学抛物线的教案

重点研究抛物线的图像
抛物线教案教学内容:1.抛物线的几何性质(范围、对称性、顶点、离心率);2.描点画抛物线.教学目标:1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;2.能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;3.在对抛物线几何性质的讨论中,注意数与形的结合与转化.教学过程一、课题引入先复习抛物线的定义、四类标准方程以及相应的焦点坐标、准线方程.然后提出:为了准确而简便地画出抛物线的图形,应对抛物线的标准方程所对应的图形的位置有一个大体的估计,为此要先对抛物线的范围、对称性、截距进行讨论.还应明确,把抛物线的定义与椭圆、双曲线的第二定义加以对比,提出抛物线的离心率等于1.二、知识讲解1.抛物线对学生来说是比较熟悉的,有了讨论椭圆、双曲线几何性质的基础,再讨论抛物线的几何性质(范围、对称性、顶点、离心率)不会遇到什么障碍.但要注意:抛物线的性质和椭圆、双曲线比较起来,差别较大,它的离心率等于1,它只有一个焦点、一个顶点、一条对称轴、一条准线,它没有中心,通常称抛物线为无心圆锥曲线,而称椭圆和双曲线为有心圆锥曲线.2.在抛物线的标准方程y2=2px(p>0)中,令x=,则y=±p.这就是说,通过焦点而垂直于x轴的直线与抛物线两交点的坐标为(,p),(,-p),连结这两点的线段叫做抛物线的通径,它的长是2p.利用抛物线的几何性质及抛物线上坐标为(,p),(,-p)的两点,能够方便地画出反映抛物线基本特征的草图.三、例题讲解例1.已知抛物线的顶点在原点且经过点(5,5),x轴为对称轴,求这抛物线的方程,并画出它的图形.分析:首先由已知点坐标代入方程,求参数p.解:设抛物线方程为y2=2px,因为它过点(5,5),故  52=2p×5,p=所以  抛物线方程为y2=5x.列表x01.252234…y02.53.23.23.93.9…描点,画图,(图略)例2.探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯的圆的直径60cm,灯深为40cm,求抛物线的标准方程和焦点位置.分析:这是抛物线的实际应用题,设抛物线的标准方程后,根据题设条件,可确定抛物线上一点坐标,从而求出p值.解:(见课本P99)例3.过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于P1、P2两点,求证:以P1P2为直径的圆和这抛物线的准线相切.分析:运用抛物线的定义和平面几何知识来证比较简捷.证明:如图2-15.设P1P2的中点为P0,过P1、P0、P2分别向准线l引垂线P1Q1,P0Q0,P2Q2,垂足为Q1、Q0、Q2,则|P1F|=|P1Q1|,|P2F|=|P2Q2|∴|P1P2|=|P1F|+|P2F|=|P1Q1|+|P2Q2|=2|P0Q0|所以P0Q0是以P1P2为直径的圆P0的半径,且P0Q0⊥l,因而圆P0和准线l相切.例题4 .直线与交于A,B两点,且AB中点坐标是2,则此直线的斜率是 例题5 .上三点的纵坐标的平方成等差数列,求证:这三点与焦点的连线段长也成等差数列。四、练习与讲评1.求满足下列条件的抛物线的方程(1)顶点在原点,焦点是(0,-4)(2)顶点在原点,准线是x=4(3)焦点是F(0,5),准线是y=-5(4)顶点在原点,焦点在x轴上,过点A(-2,4)2.在同一坐标系中,画出下列抛物线的草图.(1)y2=2x (2)y2=x (3) (4)y2=4x比较这些图形,说明抛物线开口大小与方程中x的系数是怎样的关系.3.一条隧道的顶部是抛物拱形,拱高是1.1m,跨度是2.2m,求拱形的抛物线方程.4.设抛物线y2=4x的焦点F,准线l交x轴于R,过抛物线上一点P(4,4)作PQ⊥l于Q.求梯形PFRQ的面积.答 案1.(1)x2=-16y (2)y2=-16x (3)x2=20y(4)y2=-8x2.(图略)x的系数越大,抛物线张口越大3.4.14讲评:(1)要正确判断抛物线的标准形式.(2)注意p>0.(3)对于实际问题,要合理选择坐标系.小结: 1. 抛物线的几何性质 2. 数与形的结合与转化
学科网上有
y=-2x2+4x+16进行变形使其成为顶点式 即是y=-2(x-1)2+18 也就是说这个和标准的顶点式对比y=a(x-h)2+k h是对称轴 k的顶点坐标的纵坐标 那么抛物线y=ax2+bx+c的图像向右平移3个单位,再向下平移2个单位得到y=-2(x-1)2+18 现在只需要按照反方向平移回去即可 根据平移定则左加右减可以得到y=-2(x+2)2+20 那么再展开成y=ax2+bx+c 对比系数就可以得到答案了 答案是a=-2 b=-8 c=12

6,谁能帮忙找一份高中数学教学案例

《正弦定理》教学案例分析 一、教学内容: 本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。 二、教材分析: 1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书.数学必修5》(A版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。 2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。 三、教学目标: 1、知识目标: 把握正弦定理,理解证实过程。 2、能力目标: (1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。 (2)增强学生的协作能力和数学交流能力。 (3)发展学生的创新意识和创新能力。 3、情感态度与价值观: (1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的爱好。 (2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。 四、教学设想: 本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下: 五、教学过程: (一)创设问题情景 课前放映一些有关军事题材的图片,并在课首给出引例:一天,我核潜艇A正在某海域执行巡逻任务,忽然发现其正东处有一敌艇B正以30海里/小时的速度朝北偏西40°方向航行。经研究,决定向其发射鱼雷给以威慑性打击。已知鱼雷的速度为60海里/小时,问怎样确定发射角度可击中敌舰? [设计一个学生比较感爱好的实际问题,吸引学生注重力,使其马上进入到研究者的角色中来!](二)启发引导学生数学地观察问题,构建数学模型。 用几何画板模拟演示鱼雷及敌舰行踪,在探讨鱼雷发射角度的过程中,抽象出一个解三角形问题: 1、考察角A的范围,回忆“大边对大角”的性质 2、让学生猜测角A的准确角度,由AC=2BC,从而B=2A从而抽象出一个雏形:3、测量角A的实际角度,与猜测有误差,从而产生矛盾:定性研究如何转化为定量研究?4、进一步修正雏形中的公式,启发学生大胆想象:以及等 [直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!](三)引导学生用“特例到一般”的研究方法,猜想数学规律。 提出问题:1、如何对以上等式进行检验呢?激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,筛选出能成立的等式2、那这一结论对任意三角形都适用吗?指导学生用刻度尺、圆规、计算器等工具对一般三角形进行验证。 3、让学生总坚固验结果,得出猜想: 在三角形中,角与所对的边满足关系[“特例→类比→猜想”是一种常用的科学的研究思路!](四)让学生进行各种尝试,探寻理论证实的方法。 提出问题:1、如何把猜想变成定理呢?使学生注重到猜想和定理的区别,强化学生思维的严密性。 2、怎样进行理论证实呢?培养学生的转化思想,通过作高转化为熟悉的直角三角形进行证实。 3、你能找出它们的比值吗?借以检验学生是否把握了以上的研究思路。用几何画板动画演示,找到比值,突破难点。 4、将猜想变为定理,并用以解决课首提出的问题,并进行适当的思想教育。 [学生成为发现者,成为创造者!让学生享受成功的喜悦!](五)反思总结,布置作业 1、正弦定理具有对称和谐美 2、“类比→实验→猜想→证实”是一种常用的研究问题的思路和方法 课下思考:三角形中还有其它的边角定量关系吗? 六、板书设计: 正弦定理
教学目标   (1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.  (2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.  (3)掌握直线方程各种形式之间的互化.  (4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.  (5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.  (6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法. 教学建议 1.教材分析(1)知识结构  由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.

7,初中数学教学设计预案

答: 初中数学教学设计(预案) 一、学习目标与任务 (一)学习目标描述(知识与技能、过程与方法、情感态度与价值观) 本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理。 1.使学生了解直角三角形相似定理的证明方法并会应用.  2.继续渗透和培养学生对类比数学思想的认识和理解.  3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.  4.通过学习,了解由特殊到一般的唯物辩证法的观点.  (二)学习内容与学习任务说明(学习内容的选择、学习形式的确定、学习结果的描述、学习重点及难点的分析) 教法建议:  1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出相似三角形的概念  2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念  3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识  4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解  5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解  6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握…… (三)问题设计(能激发学生在教学活动中思考所学内容的问题) 从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识   二、学习者特征分析(说明学生的学习特点、学习习惯、学习交往特点等) 1.学生是海南乐东冲坡中学初三(12)的“远程教育班”学生 2.每位学生都有制作电脑画的能力。能进行网络浏览。 3.学生思维灵活,感情丰富,有较强的合作意识,动手操作能力。
初中数学教学设计(预案)一、学习目标与任务 (一)学习目标描述(知识与技能、过程与方法、情感态度与价值观) 本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理。1.使学生了解直角三角形相似定理的证明方法并会应用.2.继续渗透和培养学生对类比数学思想的认识和理解.3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.4.通过学习,了解由特殊到一般的唯物辩证法的观点.  (二)学习内容与学习任务说明(学习内容的选择、学习形式的确定、学习结果的描述、学习重点及难点的分析) 教法建议:1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出相似三角形的概念2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握…… (三)问题设计(能激发学生在教学活动中思考所学内容的问题) 从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识   二、学习者特征分析(说明学生的学习特点、学习习惯、学习交往特点等) 1.学生是海南乐东冲坡中学初三(12)的“远程教育班”学生2.每位学生都有制作电脑画的能力。能进行网络浏览。3.学生思维灵活,感情丰富,有较强的合作意识,动手操作能力。
一、学习目标与任务 (一)学习目标描述(知识与技能、过程与方法、情感态度与价值观) 本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理。 1.使学生了解直角三角形相似定理的证明方法并会应用.  2.继续渗透和培养学生对类比数学思想的认识和理解.  3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.  4.通过学习,了解由特殊到一般的唯物辩证法的观点.  (二)学习内容与学习任务说明(学习内容的选择、学习形式的确定、学习结果的描述、学习重点及难点的分析) 教法建议:  1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出相似三角形的概念  2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念  3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识  4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解  5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解  6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握…… (三)问题设计(能激发学生在教学活动中思考所学内容的问题) 从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识   二、学习者特征分析(说明学生的学习特点、学习习惯、学习交往特点等) 1.学生是海南乐东冲坡中学初三(12)的“远程教育班”学生 2.每位学生都有制作电脑画的能力。能进行网络浏览。 3.学生思维灵活,感情丰富,有较强的合作意识,动手操作能力。
1

文章TAG:中学  中学数学  中学数学教学  数学  中学数学教学设计教案  
下一篇