1,帮忙整理一下初中数学知识点

晕额、我好像有资料单的、

帮忙整理一下初中数学知识点

2,初中数学的重点

几何 函数 代数 都是重点哦 ~

初中数学的重点

3,初中数学知识

设第一个数为x,x+x+7+x+14=3x+21。再带进去就好了。
C

初中数学知识

4,初二上数学知识点总结

时间如流水般淌过,转眼间考试也已结束,试卷也发下来了.望着试卷上的分数,我惊讶了.因为这并不是我真正想要的分数.为什么我不能考得再高一些呢!于是,我开始自我检查. 我平时不上课不认真,地理竟然还没及格,为此,我想出了几个办法.1)在做题前,时刻要记得还有个"";2)解答题时,不要急于下笔,要先在草稿纸上列出这道题的主要步骤,然后按照步骤一步步做下来,不忽略每一个细节,尽量把每一道题都答得完整漂亮;3)平时多做一些不同类型的题,这样就会对大多数题型熟悉,拿到试卷心中就有把握;4)适当做一些计算方面的练习,让自己不在计算方面失分.我想如果我能做到我以上提到的这几眯,我一定能把考试中的失误降到最低.因此,我一定会尽力做到以上几点的. 但我想仅靠以上几点还是不够的,我还就该拥有几点科学应试技巧.于是,我根据我自己的实际情况想出了几点.第一点:拿到考卷后,应把考卷整体审视一遍,看一看哪些题比较容易,哪些题比较难.第二点:先从简单的题做起,把那些好拿的分数全部拿过来.第三点:如果有选择题不会,乱蒙也要写上一个.因为如果你写了你就有的机会,总比没有机会好.第四点:遇到难题,实在写不出来的话,就过.不要死死地盯着那道题,而忽略了别的题.第五点:考完后,认真地检查,看看自己有没有把题目看错或抄错. 在下一次考试中,我一定会尽自己最大的努力做到最好 期中考试和期末考试一样重要,有时还意义非凡。考好了,心里甜滋滋的 ,随之而来的是老师的赞扬、同学们的羡慕和父母的喜悦;考得不好,老师会失望,父母会生气,还可能会面对同学轻视得眼光和讥讽的话语。以我微薄之见,考好则已,考不好也别灰心,如果上要考虑长辈的夸奖,下要考虑同学的冷嘲热讽,则必败无疑。考好不骄,考不好不气馁,以平平和和的心态应考,反而能考好。但是,说到容易,做到却难。 就拿这次期中考试来说吧。我是抱着考双百分的信心来应考的。从早到晚,考试以后,都十分疲惫和担心,时间仿佛静止了,度日如年,考好和考不好这两个词在心里打架,晚上一觉酣睡才觉得好些。 我紧张得就像心里有几只小兔子,能清晰地感觉到自己的心跳的节奏。 1.考试的启示 又一场考试结束了。每次考试都会得到一个教训或一些经验,本次考试我得到的启示是:疏忽总是存在的。 考完数学,感觉挺不错,卷子很简单,题题顺利,接着又认认真真地检查了一遍,确定全对之后,心中一直有一个希望:数学考满分。 离开考场之后,考满分的希望离我越来越近。我大胆地和同学对答案,题题正确。看到一些同学因为对答案发现错题而垂头丧气、懊恼不已,我心中暗暗的想:全部做对的感觉就是好,真庆幸我考试时认真做完题目之后,又认真地检查了一遍,那天那时,我是前所未有的高兴。 但过了不久,这特殊的高兴,却转变成了我前所未有的悲哀与失望。 “那张图我画的很大。”我略带高兴的说。 “不,还好,不大。 我吓了一跳,难道是我画错了?不可能,这张图我画了两遍呢,应该是对方弄错了,或者是个人感觉的差异吧,我这么慰?自己.但是心中依然很忐忑。 我已不敢再去自信地对答案了,但是在无意中却又听到了另一群人异口同声地报了那个使我不安的答案。我傻眼了,真的是我错了,果然是我错了!我竟然会把图与文字看叉了!我竟然没有检查出来!千算万算,还是疏忽了一处!满分的希望像一个个泡沫顿时在心中破灭了.3分就这么悄悄地从我的试卷上溜走了.3分,对于这么容易的试卷来说是多么大的损失啊! 就这样,我后悔了一个下午。 这就是疏忽,怎么躲也躲不过。但是由于排名按四门课的总分计算,其他科目的成绩总算没有辜负我的努力。于是启示之二由此可得:学习需要全面发展。也许因为其他方面的优秀而提高了总成绩。当然,倘若将疏忽减少到最小,同时又尽力提高其他科目的优秀程度,那总成绩就会大大提高。因此,全面发展很重要。 一般来说,疏忽不能避免,但可以尽力减少,而全面发展又是能弥补疏忽的一条捷径 改改就行了
这个还是建议你去问老师比较好。
建议还是翻翻书本,自己总结一下较好,因为学习知识要点的关键是理解并掌握,目的是为了运用所学知识很好的解决问题。

5,初中数学概率知识点归纳

【概率的定义】 随机事件出现的可能性的量度。概率论最基本的概念之一。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。 ■概率的频率定义 随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。A.H.柯尔莫哥洛夫于1933年给出了概率的公理化定义。 ■概率的严格定义 设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个集合函数,P(·)要满足下列条件: (1)非负性:对于每一个事件A,有P(A)≥0; (2)规范性:对于必然事件S,有P(S)=1; (3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+…… ■概率的古典定义 如果一个试验满足两条: (1)试验只有有限个基本结果; (2)试验的每个基本结果出现的可能性是一样的。 这样的试验,成为古典试验。 对于古典试验中的事件A,它的概率定义为: P(A)=m/n,n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。这种定义概率的方法称为概率的古典定义。
初中数学概率初步既然有初步二字,明显会有更深入的内容,而目前来说知识基础中的基础,生活中,概率应用也是很广,尤其是对某些事情的推断,对某些数据的统计,都需要用到,那么,你首先要学着去初步理解初中数学概率初步的思维方式,然后,来看中考复习要求。 1、理解什么是必然发生的事件、不可能发生的事件,什么是随机事件. 2、在具体情境中了解概率的意义,体会概率是描述不确定现象的规律的数学模型,理解 概率的取值范围的意义,发展随机观念.· 3、能够运用列举法(包括列表、画树形图)计算简单事件发生的概率. 4、能够通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率 的估计值,理解频率与概率的区别与联系,并能够自主设计满足条件的概率模型. 5、通过实例进一步丰富对概率的认识,并能解决一些实际问题. 6、解进行模拟实验的必要性,能根据问题的实际背景设计合理的模拟实验. 7、体会随机观念和概率思想 1.随机事件的定义. 3·计算简单事件概率的方法,重点学习了两种随机事件概率的计算方法,第一种,只涉及一步实验的随机事件发生的概率,如根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种,通过列表法、列举法、树形图来计算涉及两步或两步以上实验的随机事件发生的概率,如配紫色,对游戏是否公平的计算. 4·利用频率估计概率,分为如下两种情况:第一种,利用实验的方法进行概率估算;第二种,利用模拟实验的方法进行概率估算.如利用计算器产生随机数来模拟实验的方法. 5.体会大量重复实验中的频率与事件发生的概率之间的关系,通过设计简单的概率模型.重在对事件发生可能性的刻画,来帮助人们在不确定的情境中做出合理的决策,如通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型.
概率论的知识主要分以下几块:1、古典概型,条件概型,伯努利概型,以及乘法公式、全概率公式和贝叶斯公式。在这一块主要对基本事件和随机事件的关系搞清楚,能够熟练运用排列组合的知识。2、一维随机变量(离散型和连续型),在这里要理解随机变量的分布函数,离散型随机变量的分布律,连续型的概率密度以及他们之间的关系,并能熟练求解;要熟悉常见的离散型随机变量和连续型随机变量3、二位随机变量,内容跟2差不多,只不过多了边际分布律和边际概率密度,要理解他们和联合分布律、联合概率密度之间的关系及运算4、概率的数字特征:期望、方差、协方差和相关系数,重点掌握期望和方差,包括计算及相关性质。

6,初中数学几何知识点

几何知识点汇总: 第一部分:相交线与平行线 1、线段、直线的基本性质:2、角的分类: 3、平面内两条直线的关系: 4、平行线的性质与判定: 第二部分:三角形 1、重要线段:中线、角平分线、高线、中位线: 2、三角形边、角的性质: 3、三角形按边、按角分类: 4、三角形中位线性质及应用: 5、等腰三角形的性质: 6、等腰三角形的判定: 7、直角三角形的性质: 8、直角三角形的判定: 第三部分:全等与相似 1、全等三角形的性质、判定: 2、直角三角形的判定: 3、相似三角形的性质、判定: 4、相似多边形的性质与判定: 第四部分:四边形 1、多边形的内角和与外角和: 2、平行四边形的定义、性质、判定: 3、平行四边形的典型图形与结论: 5、矩形的定义、性质、判定: 6、矩形的典型图形与结论: 7、菱形的定义、性质、判定: 8、菱形的的典型图形与结论: 9、正方形的的定义、性质、判定: 10、正方形的典型图形与结论: 11、等腰梯形的定义、性质、判定: 12、等腰梯形的的典型图形与结论: 13、顺次连接各边中点所成四边形的形状与原四边形的关系: 14、常见四边形的对称特点: 第五部分: 圆 1、点与圆的位置关系: 2、垂径定理: 3、圆心角的定义、性质定理: 4、圆周角的定义、性质定理: 5、确定圆的条件: 6、圆的对称性: 7、直线和圆的位置关系: 8、切线的性质、判定: 9、切线长定理: 10、三角形的内心、外心的定义和确定方法: 11、圆与圆的位置关系: 12、正多边形和圆: 13、弧长公式、扇形面积公式: 15、扇形与它围成的圆锥的关系: 第六部分:视图与投影 1、几何体的截面的形状: 2、小正方体的展开图: 3、常见集几何体的三视图: 4、中心投影、平行投影、正投影: 第七部分:平移与旋转 1、图形平移的性质: 2、图形旋转的性质: 第八部分:解直角三角形 1、三种锐角函数的定义式: 2、三角函数的特殊值: 3、解直角三角形所需要的关系式及定理: 4、常见解直角三角形的应用: 5、测量物体高度的两种主要方法: 第九部分: (一)几何模型 (二)解决问题的策略 1、利用特殊情形探索规律: 2、分情况讨论: 3、将未知转化为已知: 4、数与形相结合: 5、几何与代数的综合应用:
目录就是知识点
初中数学概念及定义总结 三角形三条边的关系 定理:三角形两边的和大于第三边 推论:三角形两边的差小于第三边 三角形内角和 三角形内角和定理 三角形三个内角的和等于180° 推论1 直角三角形的两个锐角互余 推论2 三角形的一个外角等于和它不相邻的两个内角和 推论3 三角形的一个外角大雨任何一个和它不相邻的内角 角的平分线 性质定理 在角的平分线上的点到这个角的两边的距离相等 判定定理 到一个角的两边的距离相等的点,在这个角的平分线上 等腰三角形的性质 等腰三角形的性质定理 等腰三角形的两底角相等 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 推论2 等边三角形的各角都相等,并且每一个角等于60° 等腰三角形的判定 判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等 推论1 三个角都相等的三角形是等边三角形 推论2 有一个角等于60°的等腰三角形是等边三角形 推论3 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 线段的垂直平分线 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 轴对称和轴对称图形 定理1 关于某条之间对称的两个图形是全等形 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 定理3 两个图形关于某直线对称,若它们的对应线段或延长线相交,那么交点在对称轴上 逆定理 若两个图形的对应点连线被同一条直线垂直平分,那这两个图形关于这条直线对称 勾股定理 勾股定理 直角三角形两直角边a、b的平方和,等于斜边c的平方,即 a2 + b2 = c2 勾股定理的逆定理 勾股定理的逆定理 如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形 四边形 定理 任意四边形的内角和等于360° 多边形内角和 定理 多边形内角和定理n边形的内角的和等于(n - 2)·180° 推论 任意多边形的外角和等于360° 平行四边形及其性质 性质定理1 平行四边形的对角相等 性质定理2 平行四边形的对边相等 推论 夹在两条平行线间的平行线段相等 性质定理3 平行四边形的对角线互相平分 平行四边形的判定 判定定理1 两组对边分别平行的四边形是平行四边形 判定定理2 两组对角分别相等的四边形是平行四边形 判定定理3 两组对边分别相等的四边形是平行四边形 判定定理4 对角线互相平分的四边形是平行四边形 判定定理5 一组对边平行且相等的四边形是平行四边形 矩形 性质定理1 矩形的四个角都是直角 性质定理2 矩形的对角线相等 推论 直角三角形斜边上的中线等于斜边的一半 判定定理1 有三个角是直角的四边形是矩形 判定定理2 对角线相等的平行四边形是矩形 菱形 性质定理1 菱形的四条边都相等 性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 判定定理1 四边都相等的四边形是菱形 判定定理2 对角线互相垂直的平行四边形是菱形 正方形 性质定理1 正方形的四个角都是直角,四条边都相等 性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 中心对称和中心对称图形 定理1 关于中心对称的两个图形是全等形 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 梯形 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 三角形、梯形中位线 三角形中位线定理 三角形的中位线平行与第三边,并且等于它的一半 梯形中位线定理 梯形的中位线平行与两底,并且等于两底和的一半 比例线段 1、 比例的基本性质 如果a∶b=c∶d,那么ad=bc 2、 合比性质 3、 等比性质 平行线分线段成比例定理 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 推论 平行与三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行与三角形的第三边 垂直于弦的直径 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧 推论1 (1) 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 (2) 弦的垂直平分线过圆心,并且平分弦所对的两条弧 (3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 圆的两条平分弦所夹的弧相等 圆心角、弧、弦、弦心距之间的关系 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等 圆周角 定理 一条弧所对的圆周角等于它所对的圆心角的一半 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直角 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 圆的内接四边形 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 切线的判定和性质 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 切线的性质定理 圆的切线垂直于经过切点半径 推论1 经过圆心且垂直于切线的直径必经过切点 推论2 经过切点且垂直于切线的直线必经过圆心 切线长定理 定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 弦切角 弦切角定理 弦切角等于它所夹的弧对的圆周角 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 和圆有关的比例线段 相交弦定理:圆内的两条相交弦,被焦点分成的两条线段长的积相等 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项 推论 从圆外一点因圆的两条割线,这一点到每条割线与圆的焦点的两条线段长的积相
百度一下数学定理就OK了
同来收益!谢谢各位!!
作业、考题、练习题等…. 上“网络1对1答疑”网,北京一线(状元)名师亲自辅导。(名校各科周总结“视频”课程精彩万分,赶快试听吧~~~)

7,初一数学整式知识点归纳

单项式和多项式统称为整式。 代数式中的一种有理式.不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。 (含有字母有除法运算的,那么式子 叫做分式fraction.) 整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。 加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。 整式和同类项 1.单项式 (1)单项式的表示形式:1、数与字母的乘积这样的代数式叫做单项式2、单个字母也是单项式。 3、单个的数是单项式4、字母与字母相乘成为单项式5、数与数相乘称为单项式 (2)单项式的系数:单项式中的 数字因数及性质符号叫做单项式的系数。 如果一个单项式,只含有数字因数,是正数的单项式系数为1,是负数的单项式系数为—1。 (3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。 2.多项式 (1)多项式的概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。多项式中的符号,看作各项的性质符号。一元N次多项式最多N+1项 (2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。 (3)多项式的排列: 1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。 2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。 由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。 为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列。 在做多项式的排列的题时注意: (1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。 (2)有两个或两个以上字母的多项式,排列时,要注意: a.先确认按照哪个字母的指数来排列。 b.确定按这个字母向里排列,还是向外排列。 (3)整式: 单项式和多项式统称为整式。 (4)同类项的概念: 所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。 掌握同类项的概念时注意: 1.判断几个单项式或项,是否是同类项,就要掌握两个条件: ①所含字母相同。 ②相同字母的次数也相同。 2.同类项与系数无关,与字母排列的顺序也无关。 3.几个常数项也是同类项。 (5)合并同类项: 1.合并同类项的概念: 把多项式中的同类项合并成一项叫做合并同类项。 2.合并同类项的法则: 同类项的系数相加,所得结果作为系数,字母和字母的指数不变。 3.合并同类项步骤: ⑴.准确的找出同类项。 ⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。 ⑶.写出合并后的结果。 在掌握合并同类项时注意: 1.如果两个同类项的系数互为相反数,合并同类项后,结果为0. 2.不要漏掉不能合并的项。 3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。 合并同类项的关键:正确判断同类项。 整式和整式的乘法 整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。 加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。 同底数幂的乘法法则:同底数幂相乘,底数不变指数相加。 幂的乘方法则:幂的乘方,底数不变,指数相乘。 积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。 单项式与单项式相乘有以下法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。 单项式与多项式相乘有以下法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。 多项式与多项式相乘有下面的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。 平方差公式:两数和与这两数差的积等于这两数的平方差。 完全平方公式:两数和的平方,等于这两数的平方和,加上这两数积的2倍。 两数差的平方,等于这两数的平方和,减去这两积的2倍。 同底数幂相除,底数不变,指数相减。 谈整式学习的要点 屠新民 整式是代数式中最基本的式子,引进整式是实际的需要,也是学习后续内容(例如分式、一元二次方程等)的需要。整式是在以前学习了有理数运算、列简单的代数式、一元一次方程及不等式的基础上引进的。事实上,整式的有关内容在六年级已经学习过,但现在的整式内容比过去更加强了应用,增加了实际应用的背景。 本章知识结构框图: 本章有较多的知识点属于重点或难点,既是重点又是难点的内容为如下三个方面。 一、整式的四则运算 1. 整式的加减 合并同类项是重点,也是难点。合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。 2. 整式的乘除 重点是整式的乘除,尤其是其中的乘法公式。乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握。因此,乘法公式的灵活运用是难点,添括号(或去括号)时,括号中符号的处理是另一个难点。添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)的法则进行。在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除。 整式四则运算的主要题型有: (1)单项式的四则运算 此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。 (2)单项式与多项式的运算 此类题目多以解答题的形式出现,技巧性强,其特点为考查单项式与多项式的四则运算。 二、因式分解 难点是因式分解的四种基本方法(提公因式法、运用公式法、分组分解法、十字相乘法)。因式分解是整式乘法的逆向变形,因式分解的方法的引入要紧紧抓住这一点。
1、3x的5次方 加 5X的3次方 减 2x的2次方乘Y的4次方 减 10XY 加 6 中最高次项是 (2x??y四次方 ),最高次项系数是(2 ),常项数是(6 ),他是(6)次(5 )项多项式。 2、多项式4X-6X的N 1次方加五分之一X的N 2次方加四分之三的N 3次方是(N 3 )次(4 )项式。 几次几项式,次为最高次幂,项就是合并完同类项有几项。
单项式和多项式统称为整式。 代数式中的一种有理式.不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。 整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。 加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。整式和同类项 1.单项式 (1)单项式的概念:数与字母的积这样的代数式叫做单项式,单独一个数或一个字母也是单项式。 注意:数与字母之间是乘积关系。 (2)单项式的系数:单项式中的字母因数叫做单项式的系数。 如果一个单项式,只含有字母因数,是正数的单项式系数为1,是负数的单项式系数为—1。 (3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。 2.多项式 (1)多项式的概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。多项式中的符号,看作各项的性质符号。 (2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。 (3)多项式的排列: 1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。 2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。 由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。 为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列。 在做多项式的排列的题时注意: (1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。 (2)有两个或两个以上字母的多项式,排列时,要注意: a.先确认按照哪个字母的指数来排列。 b.确定按这个字母向里排列,还是生里排列。 (3)整式: 单项式和多项式统称为整式。 (4)同类项的概念: 所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。 掌握同类项的概念时注意: 1.判断几个单项式或项,是否是同类项,就要掌握两个条件: ①所含字母相同。 ②相同字母的次数也相同。 2.同类项与系数无关,与字母排列的顺序也无关。 3.几个常数项也是同类项。 (5)合并同类项: 1.合并同类项的概念: 把多项式中的同类项合并成一项叫做合并同类项。 2.合并同类项的法则: 同类项的系数相加,所得结果作为系数,字母和字母的指数不变。 3.合并同类项步骤: ⑴.准确的找出同类项。 ⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。 ⑶.写出合并后的结果。 在掌握合并同类项时注意: 1.如果两个同类项的系数互为相反数,合并同类项后,结果为0. 2.不要漏掉不能合并的项。 3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。 合并同类项的关键:正确判断同类项。 整式和整式的乘法 整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。 加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。 同底数幂的乘法法则:同底数幂相乘,底数不变指数相加。 幂的乘方法则:幂的乘方,底数不变,指数相乘。 积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。 单项式与单项式相乘有以下法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。 单项式与多项式相乘有以下法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。 多项式与多项式相乘有下面的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。 平方差公式:两数和与这两数差的积等于这两数的平方差。 完全平方公式:两数和的平方,等于这两数的平方和,加上这两数积的2倍。 两数差的平方,等于这两数的平方和,减去这两积的2倍。 同底数幂相除,底数不变,指数相减。

文章TAG:初中  初中数学  数学  重点  初中数学重点知识归纳  
下一篇